Node Classification On Citeseer Full
المقاييس
Accuracy
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
اسم النموذج | Accuracy | Paper Title | Repository |
---|---|---|---|
ASGCN | 79.66% | Adaptive Sampling Towards Fast Graph Representation Learning | |
GraphSAGE | 71.40% | Inductive Representation Learning on Large Graphs | |
GCNII* | 77.13% | Simple and Deep Graph Convolutional Networks | |
IncepGCN+DropEdge | 80.50% | DropEdge: Towards Deep Graph Convolutional Networks on Node Classification | |
Graph ESN | 74.5±2.1 | Beyond Homophily with Graph Echo State Networks | - |
FDGATII | 75.6434% | FDGATII : Fast Dynamic Graph Attention with Initial Residual and Identity Mapping | |
FastGCN | 77.60% | FastGCN: Fast Learning with Graph Convolutional Networks via Importance Sampling |
0 of 7 row(s) selected.