HyperAI
HyperAI
الرئيسية
المنصة
الوثائق
الأخبار
الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
شروط الخدمة
سياسة الخصوصية
العربية
HyperAI
HyperAI
Toggle Sidebar
البحث في الموقع...
⌘
K
Command Palette
Search for a command to run...
المنصة
الرئيسية
SOTA
تصنيف العقد
Node Classification On Citeseer 48 32 20
Node Classification On Citeseer 48 32 20
المقاييس
1:1 Accuracy
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
1:1 Accuracy
Paper Title
Geom-GCN
78.02 ± 1.15
Geom-GCN: Geometric Graph Convolutional Networks
ACM-GCN+
77.67 ± 1.19
Revisiting Heterophily For Graph Neural Networks
ACM-GCN++
77.46 ± 1.65
Revisiting Heterophily For Graph Neural Networks
GloGNN
77.41 ± 1.65
Finding Global Homophily in Graph Neural Networks When Meeting Heterophily
GCNII
77.33 ± 1.48
Simple and Deep Graph Convolutional Networks
GloGNN++
77.22 ± 1.78
Finding Global Homophily in Graph Neural Networks When Meeting Heterophily
ACMII-GCN+
77.2 ± 1.61
Revisiting Heterophily For Graph Neural Networks
ACMII-GCN
77.15 ± 1.45
Revisiting Heterophily For Graph Neural Networks
Diag-NSD
77.14 ± 1.85
Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs
GGCN
77.14 ± 1.45
Two Sides of the Same Coin: Heterophily and Oversmoothing in Graph Convolutional Neural Networks
GPRGCN
77.13 ± 1.67
Adaptive Universal Generalized PageRank Graph Neural Network
ACMII-GCN++
77.12 ± 1.58
Revisiting Heterophily For Graph Neural Networks
H2GCN
77.11 ± 1.57
Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs
FAGCN
77.07 ± 2.05
Beyond Low-frequency Information in Graph Convolutional Networks
WRGAT
76.81 ± 1.89
Breaking the Limit of Graph Neural Networks by Improving the Assortativity of Graphs with Local Mixing Patterns
ACM-SGC-1
76.73 ± 1.59
Revisiting Heterophily For Graph Neural Networks
O(d)-NSD
76.70 ± 1.57
Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs
ACM-SGC-2
76.59 ± 1.69
Revisiting Heterophily For Graph Neural Networks
Gen-NSD
76.32 ± 1.65
Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs
MixHop
76.26 ± 1.33
MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing
0 of 26 row(s) selected.
Previous
Next
Node Classification On Citeseer 48 32 20 | SOTA | HyperAI