HyperAI

Node Classification On Actor

المقاييس

Accuracy

النتائج

نتائج أداء النماذج المختلفة على هذا المعيار القياسي

اسم النموذج
Accuracy
Paper TitleRepository
CATv3-sup38.5±1.2CAT: A Causally Graph Attention Network for Trimming Heterophilic Graph
MbaGCN37.97±0.91 Mamba-Based Graph Convolutional Networks: Tackling Over-smoothing with Selective State Space-
GCNH36.89 ± 1.50GCNH: A Simple Method For Representation Learning On Heterophilous Graphs
ACM-GCN+36.26 ± 1.34Revisiting Heterophily For Graph Neural Networks
Gen-NSD37.80 ± 1.22Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs
NLMLP 37.9 ± 1.3Non-Local Graph Neural Networks
FAGCN34.82 ± 1.35Beyond Low-frequency Information in Graph Convolutional Networks
SADE-GCN37.91 ± 0.97Self-attention Dual Embedding for Graphs with Heterophily-
TE-GCNN-Transfer Entropy in Graph Convolutional Neural Networks
HiGNN37.21 ± 1.35Learn from Heterophily: Heterophilous Information-enhanced Graph Neural Network
GPRGNN+DHGR37.43 ± 0.78Make Heterophily Graphs Better Fit GNN: A Graph Rewiring Approach-
SignGT38.65±0.32SignGT: Signed Attention-based Graph Transformer for Graph Representation Learning-
GPRGCN35.16 ± 0.9Adaptive Universal Generalized PageRank Graph Neural Network
RDGNN-I38.69 ± 1.41Graph Neural Reaction Diffusion Models-
ACMII-GCN36.31 ± 1.2Revisiting Heterophily For Graph Neural Networks
ACMII-GCN++37.09 ± 1.32Revisiting Heterophily For Graph Neural Networks
M2M-GNN36.72 ± 1.6Sign is Not a Remedy: Multiset-to-Multiset Message Passing for Learning on Heterophilic Graphs
Diag-NSD37.79 ± 1.01Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs
HDP37.26 ± 0.67Heterophilous Distribution Propagation for Graph Neural Networks-
NCGCN43.16 ± 1.32Clarify Confused Nodes via Separated Learning
0 of 62 row(s) selected.