HyperAI

Node Classification On Actor

المقاييس

Accuracy

النتائج

نتائج أداء النماذج المختلفة على هذا المعيار القياسي

جدول المقارنة
اسم النموذجAccuracy
cat-a-causally-graph-attention-network-for38.5±1.2
mamba-based-graph-convolutional-networks37.97±0.91
gcnh-a-simple-method-for-representation36.89 ± 1.50
revisiting-heterophily-for-graph-neural36.26 ± 1.34
neural-sheaf-diffusion-a-topological37.80 ± 1.22
non-local-graph-neural-networks37.9 ± 1.3
beyond-low-frequency-information-in-graph34.82 ± 1.35
self-attention-dual-embedding-for-graphs-with37.91 ± 0.97
transfer-entropy-in-graph-convolutional-
learn-from-heterophily-heterophilous37.21 ± 1.35
make-heterophily-graphs-better-fit-gnn-a37.43 ± 0.78
signgt-signed-attention-based-graph38.65±0.32
joint-adaptive-feature-smoothing-and-topology35.16 ± 0.9
graph-neural-reaction-diffusion-models38.69 ± 1.41
revisiting-heterophily-for-graph-neural36.31 ± 1.2
revisiting-heterophily-for-graph-neural37.09 ± 1.32
sign-is-not-a-remedy-multiset-to-multiset36.72 ± 1.6
neural-sheaf-diffusion-a-topological37.79 ± 1.01
heterophilous-distribution-propagation-for37.26 ± 0.67
clarify-confused-nodes-through-separated43.16 ± 1.32
finding-global-homophily-in-graph-neural37.7 ± 1.40
addressing-heterophily-in-node-classification34.56 ± 0.76
beyond-homophily-with-graph-echo-state-134.5 ± 0.8
understanding-over-squashing-and-bottlenecks-128.42 ± 0.75
mixture-of-experts-meets-decoupled-message37.76±0.98
non-local-graph-neural-networks31.6 ± 1.0
refining-latent-homophilic-structures-over38.87±1.0
restructuring-graph-for-higher-homophily-via36.2 ± 1.0
non-local-graph-neural-networks29.5 ± 1.3
generalizing-graph-neural-networks-beyond34.49 ± 1.63
mixture-of-experts-meets-decoupled-message37.59±1.36
revisiting-heterophily-for-graph-neural36.14 ± 1.44
revisiting-heterophily-for-graph-neural37.31 ± 1.09
cn-motifs-perceptive-graph-neural-networks36.25 ± 0.98
unigap-a-universal-and-adaptive-graph37.69 ± 1.2
neural-sheaf-diffusion-a-topological37.81 ± 1.15
enhancing-intra-class-information-extraction39.91 ± 2.41
bregman-graph-neural-network35.92 ± 0.84
higher-order-graph-convolutional-network-with41.81±0.52
improving-graph-neural-networks-with-simple35.75 ± 0.96
geom-gcn-geometric-graph-convolutional-130.3
revisiting-heterophily-for-graph-neural36.63 ± 0.84
diffusion-jump-gnns-homophiliation-via36.93 ± 0.84
mixture-of-experts-meets-decoupled-message37.97±1.01
generalizing-graph-neural-networks-beyond34.31 ± 1.31
large-scale-learning-on-non-homophilous36.10 ± 1.55
clarify-confused-nodes-through-separated43.89 ± 1.33
two-sides-of-the-same-coin-heterophily-and37.54 ± 1.56
the-heterophilic-snowflake-hypothesis35.99
ordered-gnn-ordering-message-passing-to-deal37.99 ± 1.00
mixhop-higher-order-graph-convolution32.22 ± 2.34
simple-truncated-svd-based-model-for-node34.59 ± 1.32
revisiting-heterophily-for-graph-neural35.49 ± 1.06
geom-gcn-geometric-graph-convolutional-131.63
universal-deep-gnns-rethinking-residual36.13 ± 1.21
revisiting-heterophily-for-graph-neural36.04 ± 0.83
diffwire-inductive-graph-rewiring-via-the29.35
simple-and-deep-graph-convolutional-networks-137.44 ± 1.30
breaking-the-limit-of-graph-neural-networks36.53 ± 0.77
diffwire-inductive-graph-rewiring-via-the31.98
finding-global-homophily-in-graph-neural37.35 ± 1.30
geom-gcn-geometric-graph-convolutional-129.09