HyperAI
HyperAI
الرئيسية
المنصة
الوثائق
الأخبار
الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
شروط الخدمة
سياسة الخصوصية
العربية
HyperAI
HyperAI
Toggle Sidebar
البحث في الموقع...
⌘
K
Command Palette
Search for a command to run...
المنصة
الرئيسية
SOTA
تصنيف العقد في الرسوم البيانية غير المتجانسة (متجانسة الخصائص المختلفة)
Node Classification On Non Homophilic 9
Node Classification On Non Homophilic 9
المقاييس
1:1 Accuracy
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
1:1 Accuracy
Paper Title
ACM-GCN++
88.38 ± 3.43
Revisiting Heterophily For Graph Neural Networks
ACM-GCN+
88.38 ± 3.64
Revisiting Heterophily For Graph Neural Networks
ACMII-GCN++
88.38 ± 3.43
Revisiting Heterophily For Graph Neural Networks
ACMII-GCN+
88.11 ± 3.24
Revisiting Heterophily For Graph Neural Networks
ACM-GCN
87.84 ± 4.4
Revisiting Heterophily For Graph Neural Networks
ACMII-GCN
86.76 ± 4.75
Revisiting Heterophily For Graph Neural Networks
O(d)-NSD
85.95 ± 5.51
Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs
Diag-NSD
85.67 ± 6.95
Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs
NLMLP
85.4 ± 3.8
Non-Local Graph Neural Networks
H2GCN
84.86 ± 7.23
Beyond Low-frequency Information in Graph Convolutional Networks
GGCN
84.86 ± 4.55
Two Sides of the Same Coin: Heterophily and Oversmoothing in Graph Convolutional Neural Networks
GloGNN
84.32 ± 4.15
Finding Global Homophily in Graph Neural Networks When Meeting Heterophily
GESN
84.31 ± 4.44
Addressing Heterophily in Node Classification with Graph Echo State Networks
GloGNN++
84.05 ± 4.90
Finding Global Homophily in Graph Neural Networks When Meeting Heterophily
WRGAT
83.62 ± 5.50
Breaking the Limit of Graph Neural Networks by Improving the Assortativity of Graphs with Local Mixing Patterns
Gen-NSD
82.97 ± 5.13
Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs
ACM-SGC-2
81.89 ± 4.53
Revisiting Heterophily For Graph Neural Networks
ACM-SGC-1
81.89 ± 4.53
Revisiting Heterophily For Graph Neural Networks
GPRGCN
81.35 ± 5.32
Adaptive Universal Generalized PageRank Graph Neural Network
MixHop
77.84 ± 7.73
MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing
0 of 26 row(s) selected.
Previous
Next
Node Classification On Non Homophilic 9 | SOTA | HyperAI