HyperAI
HyperAI
الرئيسية
المنصة
الوثائق
الأخبار
الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
شروط الخدمة
سياسة الخصوصية
العربية
HyperAI
HyperAI
Toggle Sidebar
البحث في الموقع...
⌘
K
Command Palette
Search for a command to run...
المنصة
الرئيسية
SOTA
تصنيف العقد في الرسوم البيانية غير المتجانسة (متجانسة الخصائص المختلفة)
Node Classification On Non Homophilic 8
Node Classification On Non Homophilic 8
المقاييس
1:1 Accuracy
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
1:1 Accuracy
Paper Title
O(d)-NSD
89.41 ± 4.74
Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs
Gen-NSD
89.21 ± 3.84
Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs
Diag-NSD
88.63 ± 2.75
Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs
ACMII-GCN++
88.43 ± 3.66
Revisiting Heterophily For Graph Neural Networks
ACM-GCN+
88.43 ± 2.39
Revisiting Heterophily For Graph Neural Networks
ACM-GCN
88.43 ± 3.22
Revisiting Heterophily For Graph Neural Networks
ACM-GCN++
88.24 ± 3.16
Revisiting Heterophily For Graph Neural Networks
GloGNN++
88.04 ± 3.22
Finding Global Homophily in Graph Neural Networks When Meeting Heterophily
ACMII-GCN+
88.04 ± 3.66
Revisiting Heterophily For Graph Neural Networks
H2GCN
87.65 ± 4.98
Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs
ACMII-GCN
87.45 ± 3.74
Revisiting Heterophily For Graph Neural Networks
NLMLP
87.3 ± 4.3
Non-Local Graph Neural Networks
GloGNN
87.06 ± 3.53
Finding Global Homophily in Graph Neural Networks When Meeting Heterophily
WRGAT
86.98 ± 3.78
Breaking the Limit of Graph Neural Networks by Improving the Assortativity of Graphs with Local Mixing Patterns
GGCN
86.86 ± 3.29
Two Sides of the Same Coin: Heterophily and Oversmoothing in Graph Convolutional Neural Networks
ACM-SGC-1
86.47 ± 3.77
Revisiting Heterophily For Graph Neural Networks
ACM-SGC-2
86.47 ± 3.77
Revisiting Heterophily For Graph Neural Networks
GESN
83.33 ± 3.81
Addressing Heterophily in Node Classification with Graph Echo State Networks
GPRGCN
82.55 ± 6.23
Adaptive Universal Generalized PageRank Graph Neural Network
GCNII
80.39 ± 3.40
Simple and Deep Graph Convolutional Networks
0 of 26 row(s) selected.
Previous
Next
Node Classification On Non Homophilic 8 | SOTA | HyperAI