HyperAI
HyperAI
الرئيسية
المنصة
الوثائق
الأخبار
الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
شروط الخدمة
سياسة الخصوصية
العربية
HyperAI
HyperAI
Toggle Sidebar
البحث في الموقع...
⌘
K
Command Palette
Search for a command to run...
المنصة
الرئيسية
SOTA
تصنيف العقد في الرسوم البيانية غير المتجانسة (متجانسة الخصائص المختلفة)
Node Classification On Non Homophilic 6
Node Classification On Non Homophilic 6
المقاييس
1:1 Accuracy
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
1:1 Accuracy
Paper Title
ACMII-GCN+++
67.5±0.53
Revisiting Heterophily For Graph Neural Networks
ACMII-GCN+
67.44±0.31
Revisiting Heterophily For Graph Neural Networks
ACM-GCN+
67.4±0.44
Revisiting Heterophily For Graph Neural Networks
ACM-GCN++
67.3±0.48
Revisiting Heterophily For Graph Neural Networks
H2GCN
67.22±0.90
Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs
APPNP
67.21±0.56
Predict then Propagate: Graph Neural Networks meet Personalized PageRank
ACMII-GCN
67.15±0.41
Revisiting Heterophily For Graph Neural Networks
ACM-GCN
67.01±0.38
Revisiting Heterophily For Graph Neural Networks
GPRGNN
66.90±0.50
Adaptive Universal Generalized PageRank Graph Neural Network
FAGCN
66.86±0.53
Beyond Low-frequency Information in Graph Convolutional Networks
MixHop
66.80±0.58
MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing
ACM-SGC-1
66.67±0.56
Revisiting Heterophily For Graph Neural Networks
ACM-GCNII*
66.6±0.57
Revisiting Heterophily For Graph Neural Networks
MLP-2
66.55±0.72
New Benchmarks for Learning on Non-Homophilous Graphs
ACM-SGC-2
66.53±0.57
Revisiting Heterophily For Graph Neural Networks
GCNII*
66.42±0.56
Simple and Deep Graph Convolutional Networks
ACM-GCNII
66.39±0.56
Revisiting Heterophily For Graph Neural Networks
GCNII
66.38±0.45
Simple and Deep Graph Convolutional Networks
C&S(1hop)
64.60±0.57
Combining Label Propagation and Simple Models Out-performs Graph Neural Networks
C&S(2hop)
64.52±0.62
Combining Label Propagation and Simple Models Out-performs Graph Neural Networks
0 of 28 row(s) selected.
Previous
Next
Node Classification On Non Homophilic 6 | SOTA | HyperAI