HyperAI
HyperAI
الرئيسية
المنصة
الوثائق
الأخبار
الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
شروط الخدمة
سياسة الخصوصية
العربية
HyperAI
HyperAI
Toggle Sidebar
البحث في الموقع...
⌘
K
Command Palette
Search for a command to run...
المنصة
الرئيسية
SOTA
تصنيف العقد في الرسوم البيانية غير المتجانسة (متجانسة الخصائص المختلفة)
Node Classification On Non Homophilic 12
Node Classification On Non Homophilic 12
المقاييس
1:1 Accuracy
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
1:1 Accuracy
Paper Title
ScaleNet
76.0±2.0
Scale Invariance of Graph Neural Networks
Dir-GNN
75.31±1.92
Edge Directionality Improves Learning on Heterophilic Graphs
GESN
73.56 ± 1.62
Addressing Heterophily in Node Classification with Graph Echo State Networks
ACMII-GCN++
67.4 ± 2.21
Revisiting Heterophily For Graph Neural Networks
ACMII-GCN+
67.07 ± 1.65
Revisiting Heterophily For Graph Neural Networks
ACM-GCN++
67.06 ± 1.66
Revisiting Heterophily For Graph Neural Networks
ACM-GCN+
66.98 ± 1.71
Revisiting Heterophily For Graph Neural Networks
Deformable GCN
62.56 ± 1.31
Deformable Graph Convolutional Networks
LINKX
61.81 ± 1.80
Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods
NLGCN
59.0 ± 1.2
Non-Local Graph Neural Networks
GloGNN++
57.88 ± 1.76
Finding Global Homophily in Graph Neural Networks When Meeting Heterophily
GloGNN
57.54 ± 1.39
Finding Global Homophily in Graph Neural Networks When Meeting Heterophily
NLGAT
56.8 ± 2.5
Non-Local Graph Neural Networks
O(d)-NSD
56.34 ± 1.32
Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs
ACM-GCN
55.19 ± 1.49
Revisiting Heterophily For Graph Neural Networks
GGCN
55.17 ± 1.58
Two Sides of the Same Coin: Heterophily and Oversmoothing in Graph Convolutional Neural Networks
Diag-NSD
54.78 ± 1.81
Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs
Gen-NSD
53.17 ± 1.31
Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs
ACMII-GCN
51.8 ± 1.5
Revisiting Heterophily For Graph Neural Networks
WRGAT
48.85 ± 0.78
Breaking the Limit of Graph Neural Networks by Improving the Assortativity of Graphs with Local Mixing Patterns
0 of 29 row(s) selected.
Previous
Next
Node Classification On Non Homophilic 12 | SOTA | HyperAI