HyperAI

Node Classification On Non Homophilic 11

المقاييس

1:1 Accuracy

النتائج

نتائج أداء النماذج المختلفة على هذا المعيار القياسي

اسم النموذج
1:1 Accuracy
Paper TitleRepository
FAGCN46.07 ± 2.11Beyond Low-frequency Information in Graph Convolutional Networks
NLMLP 50.7 ± 2.2Non-Local Graph Neural Networks
ACM-GCN+74.47 ± 1.84Revisiting Heterophily For Graph Neural Networks
ACM-GCN69.14 ± 1.91Revisiting Heterophily For Graph Neural Networks
Diag-NSD68.68 ± 1.73Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs
O(d)-NSD68.04 ± 1.58Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs
ACMII-GCN68.46 ± 1.7Revisiting Heterophily For Graph Neural Networks
Dir-GNN79.71±1.26Edge Directionality Improves Learning on Heterophilic Graphs
ACM-GCN++74.41 ± 1.49Revisiting Heterophily For Graph Neural Networks
GPRGCN62.59 ± 2.04Adaptive Universal Generalized PageRank Graph Neural Network
ScaleNet80.1±1.5Scale Invariance of Graph Neural Networks
Gen-NSD67.93 ± 1.58Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs
ACMII-GCN++74.76 ± 2.2Revisiting Heterophily For Graph Neural Networks
ACMII-GCN+74.56 ± 2.08Revisiting Heterophily For Graph Neural Networks
NLGAT 65.7 ± 1.4Non-Local Graph Neural Networks
WRGAT65.24 ± 0.87 Breaking the Limit of Graph Neural Networks by Improving the Assortativity of Graphs with Local Mixing Patterns
GESN77.05 ± 1.24Addressing Heterophily in Node Classification with Graph Echo State Networks
MixHop60.50 ± 2.53 MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing
GloGNN++71.21 ± 1.84 Finding Global Homophily in Graph Neural Networks When Meeting Heterophily
H2GCN60.11 ± 2.15Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs
0 of 29 row(s) selected.