HyperAIHyperAI

Node Classification On Non Homophilic 1

المقاييس

1:1 Accuracy

النتائج

نتائج أداء النماذج المختلفة على هذا المعيار القياسي

اسم النموذج
1:1 Accuracy
Paper TitleRepository
GAT71.01 ± 4.66Graph Attention Networks-
MixHop77.25 ± 7.80MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing-
ACM-GCNII94.63 ± 2.96Revisiting Heterophily For Graph Neural Networks-
Snowball-274.88 ± 3.42Break the Ceiling: Stronger Multi-scale Deep Graph Convolutional Networks-
GraphSAGE64.85 ± 5.14Inductive Representation Learning on Large Graphs-
H2GCN87.5 ± 1.77Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs-
ACMII-Snowball-296.63 ± 2.24Revisiting Heterophily For Graph Neural Networks-
ACMII-Snowball-397.00 ± 2.63Revisiting Heterophily For Graph Neural Networks-
GCN+JK62.50 ± 15.75Revisiting Heterophily For Graph Neural Networks-
GPRGNN93.75 ± 2.37Adaptive Universal Generalized PageRank Graph Neural Network-
ACM-Snowball-296.38 ± 2.59Revisiting Heterophily For Graph Neural Networks-
ACM-SGC-193.25 ± 2.92Revisiting Heterophily For Graph Neural Networks-
ACMII-GCN+96.75 ± 1.79Revisiting Heterophily For Graph Neural Networks-
Geom-GCN*64.12Geom-GCN: Geometric Graph Convolutional Networks-
ACM-SGC-294.00 ± 2.61Revisiting Heterophily For Graph Neural Networks-
MLP-293.87 ± 3.33New Benchmarks for Learning on Non-Homophilous Graphs-
Snowball-369.5 ± 5.01Break the Ceiling: Stronger Multi-scale Deep Graph Convolutional Networks-
APPNP92.00 ± 3.59Predict then Propagate: Graph Neural Networks meet Personalized PageRank-
ACM-GCNII*94.37 ± 2.81Revisiting Heterophily For Graph Neural Networks-
ACMII-GCN++97.13 ± 1.68Revisiting Heterophily For Graph Neural Networks-
0 of 32 row(s) selected.