HyperAI
الرئيسية
الأخبار
أحدث الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
العربية
HyperAI
Toggle sidebar
البحث في الموقع...
⌘
K
الرئيسية
SOTA
Node Classification On Non Homophilic
Node Classification On Non Homophilic 1
Node Classification On Non Homophilic 1
المقاييس
1:1 Accuracy
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
1:1 Accuracy
Paper Title
Repository
GAT
71.01 ± 4.66
Graph Attention Networks
MixHop
77.25 ± 7.80
MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing
ACM-GCNII
94.63 ± 2.96
Revisiting Heterophily For Graph Neural Networks
Snowball-2
74.88 ± 3.42
Break the Ceiling: Stronger Multi-scale Deep Graph Convolutional Networks
GraphSAGE
64.85 ± 5.14
Inductive Representation Learning on Large Graphs
H2GCN
87.5 ± 1.77
Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs
ACMII-Snowball-2
96.63 ± 2.24
Revisiting Heterophily For Graph Neural Networks
ACMII-Snowball-3
97.00 ± 2.63
Revisiting Heterophily For Graph Neural Networks
GCN+JK
62.50 ± 15.75
Revisiting Heterophily For Graph Neural Networks
GPRGNN
93.75 ± 2.37
Adaptive Universal Generalized PageRank Graph Neural Network
ACM-Snowball-2
96.38 ± 2.59
Revisiting Heterophily For Graph Neural Networks
ACM-SGC-1
93.25 ± 2.92
Revisiting Heterophily For Graph Neural Networks
ACMII-GCN+
96.75 ± 1.79
Revisiting Heterophily For Graph Neural Networks
Geom-GCN*
64.12
Geom-GCN: Geometric Graph Convolutional Networks
ACM-SGC-2
94.00 ± 2.61
Revisiting Heterophily For Graph Neural Networks
MLP-2
93.87 ± 3.33
New Benchmarks for Learning on Non-Homophilous Graphs
Snowball-3
69.5 ± 5.01
Break the Ceiling: Stronger Multi-scale Deep Graph Convolutional Networks
APPNP
92.00 ± 3.59
Predict then Propagate: Graph Neural Networks meet Personalized PageRank
ACM-GCNII*
94.37 ± 2.81
Revisiting Heterophily For Graph Neural Networks
ACMII-GCN++
97.13 ± 1.68
Revisiting Heterophily For Graph Neural Networks
0 of 32 row(s) selected.
Previous
Next