HyperAI

Natural Language Inference On Snli

المقاييس

% Test Accuracy
% Train Accuracy
Parameters

النتائج

نتائج أداء النماذج المختلفة على هذا المعيار القياسي

جدول المقارنة
اسم النموذج% Test Accuracy% Train AccuracyParameters
self-explaining-structures-improve-nlp-models92.3?355m+
distance-based-self-attention-network-for86.389.64.7m
combining-similarity-features-and-deep84.4--
learning-to-compose-task-specific-tree85.691.22.9m
multi-task-deep-neural-networks-for-natural91.697.2330m
parameter-re-initialization-through-cyclical86.73--
i-know-what-you-want-semantic-learning-for91.395.7308m
conditionally-adaptive-multi-task-learning92.192.6340m
order-embeddings-of-images-and-language81.498.815m
a-decomposable-attention-model-for-natural86.890.5580k
smart-robust-and-efficient-fine-tuning-for---
learning-natural-language-inference-using85.085.92.8m
enhancing-sentence-embedding-with-generalized86.694.965m
enhanced-lstm-for-natural-language-inference88.0--
reinforced-self-attention-network-a-hybrid-of86.392.63.1m
deep-fusion-lstms-for-text-semantic-matching84.685.2320k
recurrent-neural-network-based-sentence85.590.512m
dr-bilstm-dependent-reading-bidirectional88.594.17.5m
shortcut-stacked-sentence-encoders-for-multi85.789.89.7m
deep-contextualized-word-representations89.392.140m
reading-and-thinking-re-read-lstm-unit-for87.590.72.0m
semantics-aware-bert-for-language91.994.4339m
what-do-questions-exactly-ask-mfae-duplicate90.0793.18-
a-fast-unified-model-for-parsing-and-sentence80.683.93.0m
natural-language-inference-over-interaction-188.992.317m
i-know-what-you-want-semantic-learning-for89.189.16.1m
a-large-annotated-corpus-for-learning-natural50.449.4
smart-robust-and-efficient-fine-tuning-for91.7--
smart-robust-and-efficient-fine-tuning-for---
compare-compress-and-propagate-enhancing85.987.33.7m
baseline-needs-more-love-on-simple-word83.8--
splitee-early-exit-in-deep-neural-networks---
semantic-sentence-matching-with-densely90.195.053.3m
a-fast-unified-model-for-parsing-and-sentence83.289.23.7m
a-decomposable-attention-model-for-natural86.890.5580k
neural-tree-indexers-for-text-understanding87.388.53.2m
learning-to-compose-task-specific-tree86.093.110m
entailment-as-few-shot-learner93.1-355
compare-compress-and-propagate-enhancing88.589.84.7m
dr-bilstm-dependent-reading-bidirectional89.394.845m
self-explaining-structures-improve-nlp-models92.3-340
long-short-term-memory-networks-for-machine85.787.31.7m
bilateral-multi-perspective-matching-for87.590.91.6m
النموذج 4489.696.179m
combining-similarity-features-and-deep84.5--
simple-and-effective-text-matching-with-188.994.02.8m
stochastic-answer-networks-for-natural88.593.33.5m
learning-natural-language-inference-with-lstm86.192.01.9m
natural-language-inference-by-tree-based82.183.33.5m
first-train-to-generate-then-generate-to93.5--
learned-in-translation-contextualized-word88.188.522m
supervised-learning-of-universal-sentence84.585.640m
النموذج 5387.590.72.0m
star-transformer86.0--
neural-semantic-encoders84.686.23.0m
multiway-attention-networks-for-modeling89.495.558m
smart-robust-and-efficient-fine-tuning-for---
disan-directional-self-attention-network-for85.691.12.4m
النموذج 5988.895.49.2m
semantic-sentence-matching-with-densely88.993.16.7m
neural-natural-language-inference-models89.193.643m
reasoning-about-entailment-with-neural83.585.3250k
modelling-interaction-of-sentence-pair-with85.186.7190k
neural-semantic-encoders85.486.93.2m
dynamic-self-attention-computing-attention87.489.07.0m
smart-robust-and-efficient-fine-tuning-for---
learning-natural-language-inference-using84.284.52.8m
neural-natural-language-inference-models88.694.14.3m
delta-a-deep-learning-based-language80.7--
a-large-annotated-corpus-for-learning-natural77.684.8220k
discourse-marker-augmented-network-with-188.895.49.2m
entailment-as-few-shot-learner93.1?355m
bilateral-multi-perspective-matching-for88.893.26.4m
deim-an-effective-deep-encoding-and88.992.622m
neural-tree-indexers-for-text-understanding83.482.54.0m
long-short-term-memory-networks-for-machine86.388.53.4m
natural-language-inference-with-hierarchical86.689.922m
a-large-annotated-corpus-for-learning-natural78.299.7
deep-contextualized-word-representations88.791.68.0m
compare-compress-and-propagate-enhancing89.392.517.5m
learning-natural-language-inference-using83.386.42.0m
discourse-marker-augmented-network-with-189.696.179m
first-train-to-generate-then-generate-to94.7--
multiway-attention-networks-for-modeling88.394.514m
a-decomposable-attention-model-for-natural86.389.5380k
enhanced-lstm-for-natural-language-inference88.693.57.7m
improving-language-understanding-by89.996.685m
dynamic-self-attention-computing-attention86.887.32.1m
a-decomposable-attention-model-for-natural86.389.5380k
dynamic-meta-embeddings-for-improved-sentence86.791.69m
shortcut-stacked-sentence-encoders-for-multi86.091.029m
combining-similarity-features-and-deep84.8--
multi-task-deep-neural-networks-for-natural90.599.1220
cell-aware-stacked-lstms-for-modeling87--
natural-language-inference-over-interaction-188.091.24.4m
semantic-sentence-matching-with-densely86.591.45.6m
النموذج 9785.9
attention-boosted-sequential-inference-model88.1--