Natural Language Inference On Mednli
المقاييس
Accuracy
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
| Paper Title | ||
|---|---|---|
| ClinicalMosaic | 86.59 | Patient Trajectory Prediction: Integrating Clinical Notes with Transformers |
| SciFive-large | 86.57 | SciFive: a text-to-text transformer model for biomedical literature |
| BioELECTRA-Base | 86.34 | BioELECTRA:Pretrained Biomedical text Encoder using Discriminators |
| CharacterBERT (base, medical) | 84.95 | CharacterBERT: Reconciling ELMo and BERT for Word-Level Open-Vocabulary Representations From Characters |
| NCBI_BERT(base) (P+M) | 84.00 | Transfer Learning in Biomedical Natural Language Processing: An Evaluation of BERT and ELMo on Ten Benchmarking Datasets |
| BiomedGPT-B | 83.83 | BiomedGPT: A Generalist Vision-Language Foundation Model for Diverse Biomedical Tasks |
| BioBERT-MIMIC | 83.45 | Saama Research at MEDIQA 2019: Pre-trained BioBERT with Attention Visualisation for Medical Natural Language Inference |
0 of 7 row(s) selected.