Link Prediction On Citeseer
المقاييس
AP
AUC
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
جدول المقارنة
اسم النموذج | AP | AUC |
---|---|---|
rethinking-kernel-methods-for-node | 91.8% | 90.9% |
multi-task-graph-autoencoders | - | - |
variational-graph-normalized-auto-encoders | 97.1 | 97 |
neural-bellman-ford-networks-a-general-graph | 93.6% | 92.3% |
binarized-attributed-network-embedding | - | 95.59% |
graph-infoclust-leveraging-cluster-level-node | 96.8 | 97 |
hyperspherical-variational-auto-encoders | 95.2 | 94.7 |
adversarially-regularized-graph-autoencoder | 93 | 91.9 |
graphite-iterative-generative-modeling-of | 95.4% | 94.1% |
neural-link-prediction-with-walk-pooling-1 | 96.04 | 95.94 |
variational-graph-auto-encoders | - | - |
ness-learning-node-embeddings-from-static | 99.5 | 99.43 |
variational-graph-normalized-auto-encoders | 97 | 96.5 |