HyperAI
HyperAI
الرئيسية
الأخبار
أحدث الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
العربية
HyperAI
HyperAI
Toggle sidebar
البحث في الموقع...
⌘
K
الرئيسية
SOTA
التعلم مع العلامات الضوضائية
Learning With Noisy Labels On Cifar 10N Worst
Learning With Noisy Labels On Cifar 10N Worst
المقاييس
Accuracy (mean)
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
Accuracy (mean)
Paper Title
Repository
Co-Teaching
83.83
Co-teaching: Robust Training of Deep Neural Networks with Extremely Noisy Labels
-
ELR
83.58
Early-Learning Regularization Prevents Memorization of Noisy Labels
-
GNL
86.99
Partial Label Supervision for Agnostic Generative Noisy Label Learning
-
T-Revision
80.48
Are Anchor Points Really Indispensable in Label-Noise Learning?
-
JoCoR
83.37
Combating noisy labels by agreement: A joint training method with co-regularization
-
PSSCL
95.12
PSSCL: A progressive sample selection framework with contrastive loss designed for noisy labels
PGDF
93.65
Sample Prior Guided Robust Model Learning to Suppress Noisy Labels
-
CE
77.69
-
-
Negative-LS
82.99
Understanding Generalized Label Smoothing when Learning with Noisy Labels
-
Forward-T
79.79
Making Deep Neural Networks Robust to Label Noise: a Loss Correction Approach
-
Co-Teaching+
83.26
How does Disagreement Help Generalization against Label Corruption?
-
F-div
82.53
When Optimizing $f$-divergence is Robust with Label Noise
-
ProMix
96.16
ProMix: Combating Label Noise via Maximizing Clean Sample Utility
-
GCE
80.66
Generalized Cross Entropy Loss for Training Deep Neural Networks with Noisy Labels
-
Divide-Mix
92.56
DivideMix: Learning with Noisy Labels as Semi-supervised Learning
-
CAL
85.36
Clusterability as an Alternative to Anchor Points When Learning with Noisy Labels
-
VolMinNet
80.53
Provably End-to-end Label-Noise Learning without Anchor Points
-
CORES
83.60
Learning with Instance-Dependent Label Noise: A Sample Sieve Approach
-
ELR+
91.09
Early-Learning Regularization Prevents Memorization of Noisy Labels
-
Peer Loss
82.53
Peer Loss Functions: Learning from Noisy Labels without Knowing Noise Rates
-
0 of 25 row(s) selected.
Previous
Next
Learning With Noisy Labels On Cifar 10N Worst | SOTA | HyperAI