HyperAI

Learning With Noisy Labels On Cifar 10N 1

المقاييس

Accuracy (mean)

النتائج

نتائج أداء النماذج المختلفة على هذا المعيار القياسي

جدول المقارنة
اسم النموذجAccuracy (mean)
understanding-generalized-label-smoothing90.29
when-optimizing-f-divergence-is-robust-with-189.70
provably-end-to-end-label-noise-learning88.30
combating-noisy-labels-by-agreement-a-joint90.30
generative-noisy-label-learning-by-implicit91.97
19060018988.33
making-deep-neural-networks-robust-to-label87.14
making-deep-neural-networks-robust-to-label86.88
sample-prior-guided-robust-model-learning-to96.01
how-does-disagreement-help-generalization89.70
peer-loss-functions-learning-from-noisy89.06
psscl-a-progressive-sample-selection96.17
learning-with-instance-dependent-label-noise-194.45
co-teaching-robust-training-of-deep-neural90.33
early-learning-regularization-prevents91.46
early-learning-regularization-prevents94.43
generalized-cross-entropy-loss-for-training87.61
dividemix-learning-with-noisy-labels-as-semi-190.18
imprecise-label-learning-a-unified-framework94.85
does-label-smoothing-mitigate-label-noise89.80
learning-with-instance-dependent-label-noise-189.66
promix-combating-label-noise-via-maximizing96.97
clusterability-as-an-alternative-to-anchor90.93
robust-training-under-label-noise-by-over95.28