HyperAI
الرئيسية
الأخبار
أحدث الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
العربية
HyperAI
Toggle sidebar
البحث في الموقع...
⌘
K
الرئيسية
SOTA
Learning With Noisy Labels
Learning With Noisy Labels On Cifar 10N 1
Learning With Noisy Labels On Cifar 10N 1
المقاييس
Accuracy (mean)
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
Accuracy (mean)
Paper Title
Repository
Negative-LS
90.29
To Smooth or Not? When Label Smoothing Meets Noisy Labels
F-div
89.70
When Optimizing $f$-divergence is Robust with Label Noise
VolMinNet
88.30
Provably End-to-end Label-Noise Learning without Anchor Points
JoCoR
90.30
Combating noisy labels by agreement: A joint training method with co-regularization
GNL
91.97
Partial Label Supervision for Agnostic Generative Noisy Label Learning
T-Revision
88.33
Are Anchor Points Really Indispensable in Label-Noise Learning?
Backward-T
87.14
Making Deep Neural Networks Robust to Label Noise: a Loss Correction Approach
Forward-T
86.88
Making Deep Neural Networks Robust to Label Noise: a Loss Correction Approach
PGDF
96.01
Sample Prior Guided Robust Model Learning to Suppress Noisy Labels
Co-Teaching+
89.70
How does Disagreement Help Generalization against Label Corruption?
Peer Loss
89.06
Peer Loss Functions: Learning from Noisy Labels without Knowing Noise Rates
PSSCL
96.17
PSSCL: A progressive sample selection framework with contrastive loss designed for noisy labels
CORES*
94.45
Learning with Instance-Dependent Label Noise: A Sample Sieve Approach
Co-Teaching
90.33
Co-teaching: Robust Training of Deep Neural Networks with Extremely Noisy Labels
ELR
91.46
Early-Learning Regularization Prevents Memorization of Noisy Labels
ELR+
94.43
Early-Learning Regularization Prevents Memorization of Noisy Labels
GCE
87.61
Generalized Cross Entropy Loss for Training Deep Neural Networks with Noisy Labels
Divide-Mix
90.18
DivideMix: Learning with Noisy Labels as Semi-supervised Learning
ILL
94.85
Imprecise Label Learning: A Unified Framework for Learning with Various Imprecise Label Configurations
Positive-LS
89.80
Does label smoothing mitigate label noise?
-
0 of 24 row(s) selected.
Previous
Next