HyperAI
HyperAI
الرئيسية
المنصة
الوثائق
الأخبار
الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
شروط الخدمة
سياسة الخصوصية
العربية
HyperAI
HyperAI
Toggle Sidebar
البحث في الموقع...
⌘
K
Command Palette
Search for a command to run...
المنصة
الرئيسية
SOTA
التعلم مع العلامات الضوضائية
Learning With Noisy Labels On Cifar 10N 1
Learning With Noisy Labels On Cifar 10N 1
المقاييس
Accuracy (mean)
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
Accuracy (mean)
Paper Title
ProMix
96.97
ProMix: Combating Label Noise via Maximizing Clean Sample Utility
PSSCL
96.17
PSSCL: A progressive sample selection framework with contrastive loss designed for noisy labels
PGDF
96.01
Sample Prior Guided Robust Model Learning to Suppress Noisy Labels
SOP+
95.28
Robust Training under Label Noise by Over-parameterization
ILL
94.85
Imprecise Label Learning: A Unified Framework for Learning with Various Imprecise Label Configurations
CORES*
94.45
Learning with Instance-Dependent Label Noise: A Sample Sieve Approach
ELR+
94.43
Early-Learning Regularization Prevents Memorization of Noisy Labels
GNL
91.97
Partial Label Supervision for Agnostic Generative Noisy Label Learning
ELR
91.46
Early-Learning Regularization Prevents Memorization of Noisy Labels
CAL
90.93
Clusterability as an Alternative to Anchor Points When Learning with Noisy Labels
Co-Teaching
90.33
Co-teaching: Robust Training of Deep Neural Networks with Extremely Noisy Labels
JoCoR
90.30
Combating noisy labels by agreement: A joint training method with co-regularization
Negative-LS
90.29
To Smooth or Not? When Label Smoothing Meets Noisy Labels
Divide-Mix
90.18
DivideMix: Learning with Noisy Labels as Semi-supervised Learning
Positive-LS
89.80
Does label smoothing mitigate label noise?
F-div
89.70
When Optimizing $f$-divergence is Robust with Label Noise
Co-Teaching+
89.70
How does Disagreement Help Generalization against Label Corruption?
CORES
89.66
Learning with Instance-Dependent Label Noise: A Sample Sieve Approach
Peer Loss
89.06
Peer Loss Functions: Learning from Noisy Labels without Knowing Noise Rates
T-Revision
88.33
Are Anchor Points Really Indispensable in Label-Noise Learning?
0 of 24 row(s) selected.
Previous
Next
Learning With Noisy Labels On Cifar 10N 1 | SOTA | HyperAI