HyperAI

Learning With Noisy Labels On Cifar 100N

المقاييس

Accuracy (mean)

النتائج

نتائج أداء النماذج المختلفة على هذا المعيار القياسي

جدول المقارنة
اسم النموذجAccuracy (mean)
peer-loss-functions-learning-from-noisy57.59
imprecise-label-learning-a-unified-framework65.84
when-optimizing-f-divergence-is-robust-with-157.10
sample-prior-guided-robust-model-learning-to74.08
19060018951.55
provably-end-to-end-label-noise-learning57.80
النموذج 755.50
making-deep-neural-networks-robust-to-label57.14
co-teaching-robust-training-of-deep-neural60.37
does-label-smoothing-mitigate-label-noise55.84
clusterability-as-an-alternative-to-anchor61.73
early-learning-regularization-prevents66.72
dividemix-learning-with-noisy-labels-as-semi-171.13
understanding-generalized-label-smoothing58.59
learning-with-instance-dependent-label-noise-155.72
early-learning-regularization-prevents58.94
making-deep-neural-networks-robust-to-label57.01
combating-noisy-labels-by-agreement-a-joint59.97
learning-with-instance-dependent-label-noise-161.15
generalized-cross-entropy-loss-for-training56.73
how-does-disagreement-help-generalization57.88
robust-training-under-label-noise-by-over67.81
psscl-a-progressive-sample-selection72.00
promix-combating-label-noise-via-maximizing73.39