HyperAI
الرئيسية
الأخبار
أحدث الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
العربية
HyperAI
Toggle sidebar
البحث في الموقع...
⌘
K
الرئيسية
SOTA
Lane Detection
Lane Detection On Tusimple
Lane Detection On Tusimple
المقاييس
Accuracy
F1 score
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
Accuracy
F1 score
Paper Title
Repository
LaneATT (ResNet-18)
95.57%
96.71
Keep your Eyes on the Lane: Real-time Attention-guided Lane Detection
CLRNet(ResNet-101)
-
97.62
CLRNet: Cross Layer Refinement Network for Lane Detection
BézierLaneNet (ResNet-34)
95.65%
-
Rethinking Efficient Lane Detection via Curve Modeling
EL-GAN
96.40%
96.26
EL-GAN: Embedding Loss Driven Generative Adversarial Networks for Lane Detection
-
BézierLaneNet (ResNet-18)
95.41%
-
Rethinking Efficient Lane Detection via Curve Modeling
ENet-Label
96.29%
95.23
Agnostic Lane Detection
-
LaneATT (ResNet-122)
96.10%
96.06
Keep your Eyes on the Lane: Real-time Attention-guided Lane Detection
Pairwise pixel supervision + FCN
96.50%
94.31
Learning to Cluster for Proposal-Free Instance Segmentation
Eigenlanes (ResNet-18)
95.62%
-
Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes
-
R-34-E2E
96.22%
96.58
End-to-End Lane Marker Detection via Row-wise Classification
CondLaneNet-M(ResNet-34)
95.37%
96.98
CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution
CANet-L(ResNet101)
96.76%
97.77
CANet: Curved Guide Line Network with Adaptive Decoder for Lane Detection
-
LaneAF
95.64%
96.49
LaneAF: Robust Multi-Lane Detection with Affinity Fields
SCNN_UNet_Attention_PL*
98.38
-
Robust Lane Detection through Self Pre-training with Masked Sequential Autoencoders and Fine-tuning with Customized PolyLoss
-
FOLOLane(ERFNet)
96.92
-
Focus on Local: Detecting Lane Marker from Bottom Up via Key Point
-
End-to-end ERFNet
95.24%
90.82
Lane Detection and Classification using Cascaded CNNs
ERFNet
94.5%
-
-
-
GANet(ResNet-18)
-
97.68
A Keypoint-based Global Association Network for Lane Detection
CLLD
96.82
-
Contrastive Learning for Lane Detection via cross-similarity
CANet-S
96.56%
97.51
CANet: Curved Guide Line Network with Adaptive Decoder for Lane Detection
-
0 of 41 row(s) selected.
Previous
Next