HyperAI
HyperAI
الرئيسية
المنصة
الوثائق
الأخبار
الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
شروط الخدمة
سياسة الخصوصية
العربية
HyperAI
HyperAI
Toggle Sidebar
البحث في الموقع...
⌘
K
Command Palette
Search for a command to run...
المنصة
الرئيسية
SOTA
اكتشاف المسار
Lane Detection On Tusimple
Lane Detection On Tusimple
المقاييس
Accuracy
F1 score
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
Accuracy
F1 score
Paper Title
SCNN_UNet_Attention_PL*
98.38
-
Robust Lane Detection through Self Pre-training with Masked Sequential Autoencoders and Fine-tuning with Customized PolyLoss
PE-RESA
96.93
-
Lane detection with Position Embedding
FOLOLane(ERFNet)
96.92
-
Focus on Local: Detecting Lane Marker from Bottom Up via Key Point
CLRNet(ResNet-34)
96.9%
97.82
CLRNet: Cross Layer Refinement Network for Lane Detection
CLLD
96.82
-
Contrastive Learning for Lane Detection via cross-similarity
CLRNet(ResNet-18)
96.82%
97.89
CLRNet: Cross Layer Refinement Network for Lane Detection
RESA
96.82
96.93
RESA: Recurrent Feature-Shift Aggregator for Lane Detection
CANet-L(ResNet101)
96.76%
97.77
CANet: Curved Guide Line Network with Adaptive Decoder for Lane Detection
CANet-M
96.66%
97.44
CANet: Curved Guide Line Network with Adaptive Decoder for Lane Detection
ENet-SAD
96.64%
95.92
Learning Lightweight Lane Detection CNNs by Self Attention Distillation
HarD-SP
96.58%
96.38
Towards Lightweight Lane Detection by Optimizing Spatial Embedding
CANet-S
96.56%
97.51
CANet: Curved Guide Line Network with Adaptive Decoder for Lane Detection
CondLaneNet-L(ResNet-101)
96.54%
97.24
CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution
Pairwise pixel supervision + FCN
96.50%
94.31
Learning to Cluster for Proposal-Free Instance Segmentation
Oblique Convolution
96.50%
97.42
-
EL-GAN
96.40%
96.26
EL-GAN: Embedding Loss Driven Generative Adversarial Networks for Lane Detection
LaneNet
96.4%
94.80
Towards End-to-End Lane Detection: an Instance Segmentation Approach
Discriminative loss function
96.40%
-
Semantic Instance Segmentation with a Discriminative Loss Function
ENet-Label
96.29%
95.23
Agnostic Lane Detection
R-34-E2E
96.22%
96.58
End-to-End Lane Marker Detection via Row-wise Classification
0 of 41 row(s) selected.
Previous
Next
Lane Detection On Tusimple | SOTA | HyperAI