HyperAI
الرئيسية
الأخبار
أحدث الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
العربية
HyperAI
Toggle sidebar
البحث في الموقع...
⌘
K
الرئيسية
SOTA
Lane Detection
Lane Detection On Curvelanes
Lane Detection On Curvelanes
المقاييس
F1 score
GFLOPs
Precision
Recall
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
F1 score
GFLOPs
Precision
Recall
Paper Title
Repository
CANet-S
86.57
13.1
91.37
82.25
CANet: Curved Guide Line Network with Adaptive Decoder for Lane Detection
-
CANet-M
87.19
22.6
91.53
83.25
CANet: Curved Guide Line Network with Adaptive Decoder for Lane Detection
-
Enet-SAD
50.31
3.9
63.6
41.6
CurveLane-NAS: Unifying Lane-Sensitive Architecture Search and Adaptive Point Blending
CondLaneNet-L(ResNet-101)
86.10
44.9
88.98
83.41
CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution
CANet-L(ResNet101)
-
45.7
-
84.36
CANet: Curved Guide Line Network with Adaptive Decoder for Lane Detection
-
CLRNet-DLA34
86.1
18.4
91.4
81.39
CLRerNet: Improving Confidence of Lane Detection with LaneIoU
SCNN
65.02
328.4
76.13
56.74
CurveLane-NAS: Unifying Lane-Sensitive Architecture Search and Adaptive Point Blending
CANet-L
87.87
-
91.69
-
CANet: Curved Guide Line Network with Adaptive Decoder for Lane Detection
-
CurveLane-S
81.12
7.4
93.58
71.59
CurveLane-NAS: Unifying Lane-Sensitive Architecture Search and Adaptive Point Blending
CondLSTR (ResNet-101)
88.47
-
-
-
Generating Dynamic Kernels via Transformers for Lane Detection
CondLSTR (ResNet-18)
87.99
-
-
-
Generating Dynamic Kernels via Transformers for Lane Detection
CLRerNet-DLA34
86.47
18.4
91.66
81.83
CLRerNet: Improving Confidence of Lane Detection with LaneIoU
PointLaneNet
78.47
14.8
86.33
72.91
CurveLane-NAS: Unifying Lane-Sensitive Architecture Search and Adaptive Point Blending
CurveLane-M
81.8
11.6
93.49
72.71
CurveLane-NAS: Unifying Lane-Sensitive Architecture Search and Adaptive Point Blending
CondLaneNet-M(ResNet-34)
85.92
19.7
88.29
83.68
CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution
CondLSTR (ResNet-34)
88.23
-
-
-
Generating Dynamic Kernels via Transformers for Lane Detection
CurveLane-L
82.29
20.7
91.11
75.03
CurveLane-NAS: Unifying Lane-Sensitive Architecture Search and Adaptive Point Blending
CondLaneNet-S(ResNet-18)
85.09
10.3
87.75
82.58
CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution
0 of 18 row(s) selected.
Previous
Next