HyperAI
HyperAI
الرئيسية
الأخبار
الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
العربية
HyperAI
HyperAI
Toggle sidebar
البحث في الموقع...
⌘
K
البحث في الموقع...
⌘
K
الرئيسية
SOTA
تصنيف الرسم البياني
Graph Classification On Mnist
Graph Classification On Mnist
المقاييس
Accuracy
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
Accuracy
Paper Title
Repository
GCN+
98.382 ± 0.095
Can Classic GNNs Be Strong Baselines for Graph-level Tasks? Simple Architectures Meet Excellence
EIGENFORMER
98.362
Graph Transformers without Positional Encodings
-
NeuralWalker
98.760 ± 0.079
Learning Long Range Dependencies on Graphs via Random Walks
GatedGCN
97.340
Benchmarking Graph Neural Networks
EGT
98.173
Global Self-Attention as a Replacement for Graph Convolution
Exphormer
98.414±0.038
Exphormer: Sparse Transformers for Graphs
ESA (Edge set attention, no positional encodings)
98.753±0.041
An end-to-end attention-based approach for learning on graphs
GPS
98.05
Recipe for a General, Powerful, Scalable Graph Transformer
CKGCN
98.423
CKGConv: General Graph Convolution with Continuous Kernels
TIGT
98.230±0.133
Topology-Informed Graph Transformer
GatedGCN+
98.712 ± 0.137
Can Classic GNNs Be Strong Baselines for Graph-level Tasks? Simple Architectures Meet Excellence
GRIT
98.108
Graph Inductive Biases in Transformers without Message Passing
ESA (Edge set attention, no positional encodings, tuned)
98.917±0.020
An end-to-end attention-based approach for learning on graphs
0 of 13 row(s) selected.
Previous
Next