HyperAI
HyperAI
الرئيسية
الأخبار
أحدث الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
العربية
HyperAI
HyperAI
Toggle sidebar
البحث في الموقع...
⌘
K
الرئيسية
SOTA
تصنيف الرسم البياني
Graph Classification On Mnist
Graph Classification On Mnist
المقاييس
Accuracy
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
Accuracy
Paper Title
Repository
GCN+
98.382 ± 0.095
Can Classic GNNs Be Strong Baselines for Graph-level Tasks? Simple Architectures Meet Excellence
-
EIGENFORMER
98.362
Graph Transformers without Positional Encodings
-
NeuralWalker
98.760 ± 0.079
Learning Long Range Dependencies on Graphs via Random Walks
-
GatedGCN
97.340
Benchmarking Graph Neural Networks
-
EGT
98.173
Global Self-Attention as a Replacement for Graph Convolution
-
Exphormer
98.414±0.038
Exphormer: Sparse Transformers for Graphs
-
ESA (Edge set attention, no positional encodings)
98.753±0.041
An end-to-end attention-based approach for learning on graphs
-
GPS
98.05
Recipe for a General, Powerful, Scalable Graph Transformer
-
CKGCN
98.423
CKGConv: General Graph Convolution with Continuous Kernels
-
TIGT
98.230±0.133
Topology-Informed Graph Transformer
-
GatedGCN+
98.712 ± 0.137
Can Classic GNNs Be Strong Baselines for Graph-level Tasks? Simple Architectures Meet Excellence
-
GRIT
98.108
Graph Inductive Biases in Transformers without Message Passing
-
ESA (Edge set attention, no positional encodings, tuned)
98.917±0.020
An end-to-end attention-based approach for learning on graphs
-
0 of 13 row(s) selected.
Previous
Next
Graph Classification On Mnist | SOTA | HyperAI