HyperAI
HyperAI
الرئيسية
المنصة
الوثائق
الأخبار
الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
شروط الخدمة
سياسة الخصوصية
العربية
HyperAI
HyperAI
Toggle Sidebar
البحث في الموقع...
⌘
K
Command Palette
Search for a command to run...
المنصة
الرئيسية
SOTA
تصنيف الرسم البياني
Graph Classification On Mnist
Graph Classification On Mnist
المقاييس
Accuracy
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
Accuracy
Paper Title
ESA (Edge set attention, no positional encodings, tuned)
98.917±0.020
An end-to-end attention-based approach for learning on graphs
NeuralWalker
98.760 ± 0.079
Learning Long Range Dependencies on Graphs via Random Walks
ESA (Edge set attention, no positional encodings)
98.753±0.041
An end-to-end attention-based approach for learning on graphs
GatedGCN+
98.712 ± 0.137
Can Classic GNNs Be Strong Baselines for Graph-level Tasks? Simple Architectures Meet Excellence
CKGCN
98.423
CKGConv: General Graph Convolution with Continuous Kernels
Exphormer
98.414±0.038
Exphormer: Sparse Transformers for Graphs
GCN+
98.382 ± 0.095
Can Classic GNNs Be Strong Baselines for Graph-level Tasks? Simple Architectures Meet Excellence
EIGENFORMER
98.362
Graph Transformers without Positional Encodings
TIGT
98.230±0.133
Topology-Informed Graph Transformer
EGT
98.173
Global Self-Attention as a Replacement for Graph Convolution
GRIT
98.108
Graph Inductive Biases in Transformers without Message Passing
GPS
98.05
Recipe for a General, Powerful, Scalable Graph Transformer
GatedGCN
97.340
Benchmarking Graph Neural Networks
0 of 13 row(s) selected.
Previous
Next
Graph Classification On Mnist | SOTA | HyperAI