HyperAI
HyperAI
الرئيسية
الأخبار
الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
العربية
HyperAI
HyperAI
Toggle sidebar
البحث في الموقع...
⌘
K
البحث في الموقع...
⌘
K
الرئيسية
SOTA
تصنيف الرسم البياني
Graph Classification On Dd
Graph Classification On Dd
المقاييس
Accuracy
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
Accuracy
Paper Title
Repository
1-NMFPool
76.0%
A Non-Negative Factorization approach to node pooling in Graph Convolutional Neural Networks
-
GraphStar
79.60%
Graph Star Net for Generalized Multi-Task Learning
DGCNN
79.37%
An End-to-End Deep Learning Architecture for Graph Classification
-
DGCNN
77.21%
DGCNN: Disordered Graph Convolutional Neural Network Based on the Gaussian Mixture Model
-
GCN
78.151±3.465
Semi-Supervised Classification with Graph Convolutional Networks
EigenGCN-3
78.6%
Graph Convolutional Networks with EigenPooling
NDP
72%
Hierarchical Representation Learning in Graph Neural Networks with Node Decimation Pooling
GATv2
75.966±2.191
How Attentive are Graph Attention Networks?
TokenGT
73.950±3.361
Pure Transformers are Powerful Graph Learners
GFN-light
78.62%
Are Powerful Graph Neural Nets Necessary? A Dissection on Graph Classification
DGK
73.50%
Deep Graph Kernels
-
PNA
78.992±4.407
Principal Neighbourhood Aggregation for Graph Nets
S2V (with 2 DiffPool)
82.07%
Hierarchical Graph Representation Learning with Differentiable Pooling
GAT
73.109±3.413
Graph Attention Networks
SEAL-SAGE
80.88%
Semi-Supervised Graph Classification: A Hierarchical Graph Perspective
TREE-G
76.2%
TREE-G: Decision Trees Contesting Graph Neural Networks
GMT
78.72%
Accurate Learning of Graph Representations with Graph Multiset Pooling
U2GNN (Unsupervised)
95.67%
Universal Graph Transformer Self-Attention Networks
LDP + distance
77.5%
A simple yet effective baseline for non-attributed graph classification
Graph-JEPA
78.64%
Graph-level Representation Learning with Joint-Embedding Predictive Architectures
0 of 52 row(s) selected.
Previous
Next