HyperAI

Few Shot Semantic Segmentation On Pascal 5I 5

المقاييس

Mean IoU

النتائج

نتائج أداء النماذج المختلفة على هذا المعيار القياسي

جدول المقارنة
اسم النموذجMean IoU
hierarchical-dense-correlation-distillation71.8
apanet-adaptive-prototypes-alignment-network62.6
singular-value-fine-tuning-few-shot-169.8
multi-similarity-based-hyperrelation-network72.3
fecanet-boosting-few-shot-semantic66.7
adaptive-prototype-learning-and-allocation64.36
prior-guided-feature-enrichment-network-for61.4
msdnet-multi-scale-decoder-for-few-shot68.7
panet-few-shot-image-semantic-segmentation55.7
dense-cross-query-and-support-attention68.5
doubly-deformable-aggregation-of-covariance71.7
self-support-few-shot-semantic-segmentation73.1
mianet-aggregating-unbiased-instance-and-171.59
self-calibrated-cross-attention-network-for71.5
few-shot-segmentation-without-meta-learning-a66.6
msanet-multi-similarity-and-attention-173.99
mining-latent-classes-for-few-shot66.8
self-guided-and-cross-guided-learning-for-few62.9
pyramid-graph-networks-with-connection58.5
masked-cross-image-encoding-for-few-shot70.03
masked-cross-image-encoding-for-few-shot68.21
self-support-few-shot-semantic-segmentation69.3
intermediate-prototype-mining-transformer-for68.2
dense-cross-query-and-support-attention74.9
quaternion-valued-correlation-learning-for71.2
singular-value-fine-tuning-few-shot-172.28
hybrid-mamba-for-few-shot-segmentation74.1
bridge-the-points-graph-based-few-shot82.6
cost-aggregation-with-4d-convolutional-swin72
anti-aliasing-semantic-reconstruction-for-few57.99
clustered-patch-element-connection-for-few66.2
prototype-as-query-for-few-shot-semantic67.4
feature-proxy-transformer-for-few-shot78
few-shot-segmentation-via-cycle-consistent66.6
hmfs-hybrid-masking-for-few-shot-segmentation69.3
intermediate-prototype-mining-transformer-for69.2
mianet-aggregating-unbiased-instance-and-171.99
simpler-is-better-few-shot-semantic63.7
visual-and-textual-prior-guided-mask-assemble78.6
self-calibrated-cross-attention-network-for70.3
hypercorrelation-squeeze-for-few-shot70.4
doubly-deformable-aggregation-of-covariance70.9
hmfs-hybrid-masking-for-few-shot-segmentation67.1
sg-one-similarity-guidance-network-for-one47.1
eliminating-feature-ambiguity-for-few-shot74.2
canet-class-agnostic-segmentation-networks57.1
integrative-few-shot-learning-for71.1
visual-and-textual-prior-guided-mask-assemble74.6
self-guided-and-cross-guided-learning-for-few59.2
hybrid-mamba-for-few-shot-segmentation71.1
prototype-as-query-for-few-shot-semantic67
msanet-multi-similarity-and-attention-170.4
prior-guided-feature-enrichment-network-for61.9
prototype-mixture-models-for-few-shot57.3
doubly-deformable-aggregation-of-covariance65.7
cost-aggregation-is-all-you-need-for-few-shot71.6
clustered-patch-element-connection-for-few66.5
msanet-multi-similarity-and-attention-172.6
anti-aliasing-semantic-reconstruction-for-few60.96
a-new-local-transformation-module-for-few60.6
quaternion-valued-correlation-learning-for69.5
quaternion-valued-correlation-learning-for64.2
hierarchical-dense-correlation-distillation69.3
simpler-is-better-few-shot-semantic64.7
interclass-prototype-relation-for-few-shot70.2
feature-proxy-transformer-for-few-shot73.7
msdnet-multi-scale-decoder-for-few-shot70.8
apanet-adaptive-prototypes-alignment-network68
part-aware-prototype-network-for-few-shot62.0
interclass-prototype-relation-for-few-shot70.9
few-shot-segmentation-without-meta-learning-a65.6
dense-gaussian-processes-for-few-shot75.4
feature-weighting-and-boosting-for-few-shot55.1
hypercorrelation-squeeze-for-few-shot64.1
cost-aggregation-with-4d-convolutional-swin70.1
seggpt-segmenting-everything-in-context89.8
few-shot-semantic-segmentation-with-support68.5
doubly-deformable-aggregation-of-covariance71.4
hmfs-hybrid-masking-for-few-shot-segmentation68.2
visual-and-textual-prior-guided-mask-assemble75.2
fecanet-boosting-few-shot-semantic70
hypercorrelation-squeeze-for-few-shot69.5
doubly-deformable-aggregation-of-covariance73.3
prior-guided-feature-enrichment-network-for59
hmfs-hybrid-masking-for-few-shot-segmentation70.9
eliminating-feature-ambiguity-for-few-shot70.6
dense-gaussian-processes-for-few-shot73.5
mining-latent-classes-for-few-shot69.3
apanet-adaptive-prototypes-alignment-network66
singular-value-fine-tuning-few-shot-169.11
singular-value-fine-tuning-few-shot-171.82
adaptive-prototype-learning-and-allocation63.94
feature-weighting-and-boosting-for-few-shot59.9
learning-what-not-to-segment-a-new70.91
beyond-the-prototype-divide-and-conquer67.80
dense-cross-query-and-support-attention68.3