HyperAI
الرئيسية
الأخبار
أحدث الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
العربية
HyperAI
Toggle sidebar
البحث في الموقع...
⌘
K
الرئيسية
SOTA
Few Shot Image Classification
Few Shot Image Classification On Cub 200 5 1
Few Shot Image Classification On Cub 200 5 1
المقاييس
Accuracy
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
Accuracy
Paper Title
Repository
feat (ProtoNet)
68.65
Few-Shot Learning via Embedding Adaptation with Set-to-Set Functions
EASY 4xResNet12 (transductive)
90.5
EASY: Ensemble Augmented-Shot Y-shaped Learning: State-Of-The-Art Few-Shot Classification with Simple Ingredients
EASY 3xResNet12 (inductive)
78.56
EASY: Ensemble Augmented-Shot Y-shaped Learning: State-Of-The-Art Few-Shot Classification with Simple Ingredients
TIM-GD
82.2%
Transductive Information Maximization For Few-Shot Learning
HyperShot
66.13
HyperShot: Few-Shot Learning by Kernel HyperNetworks
PT+MAP+SF+BPA (transductive)
95.80
The Balanced-Pairwise-Affinities Feature Transform
DN4-DA (k=1)
53.15
Revisiting Local Descriptor based Image-to-Class Measure for Few-shot Learning
EASY 3xResNet12 (transductive)
90.56
EASY: Ensemble Augmented-Shot Y-shaped Learning: State-Of-The-Art Few-Shot Classification with Simple Ingredients
PT+MAP+SF+SOT (transductive)
95.80
The Self-Optimal-Transport Feature Transform
Transfer+SGC
88.35%
Graph-based Interpolation of Feature Vectors for Accurate Few-Shot Classification
-
Relation Net
50.44
Learning to Compare: Relation Network for Few-Shot Learning
PT+MAP+SF (transductive)
95.48
Few-Shot Learning by Integrating Spatial and Frequency Representation
CAML [Laion-2b]
95.8
Context-Aware Meta-Learning
-
MergedNet-Max
75.34
MergedNET: A simple approach for one-shot learning in siamese networks based on similarity layers
PEMnE-BMS*
94.78
Squeezing Backbone Feature Distributions to the Max for Efficient Few-Shot Learning
LaplacianShot
80.96
Laplacian Regularized Few-Shot Learning
High-End MAML++
67.48
Learning to learn via Self-Critique
RS-FSL
65.66
Rich Semantics Improve Few-shot Learning
-
S2M2R
80.68
Charting the Right Manifold: Manifold Mixup for Few-shot Learning
Self-Critique and Adapt + High-End MAML++
70.46
Learning to learn via Self-Critique
0 of 36 row(s) selected.
Previous
Next