Few Shot Image Classification On Cifar Fs 5 1
المقاييس
Accuracy
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
جدول المقارنة
اسم النموذج | Accuracy |
---|---|
easy-ensemble-augmented-shot-y-shaped | 90.2 |
the-self-optimal-transport-feature-transform | 92.83 |
adaptive-subspaces-for-few-shot-learning | 87.3 |
adaptive-dimension-reduction-and-variational | 90.63 |
bridging-multi-task-learning-and-meta | 84.1 |
region-comparison-network-for-interpretable | 77.63 |
match-them-up-visually-explainable-few-shot | 80.16 |
pushing-the-limits-of-simple-pipelines-for | 92.2 |
attribute-surrogates-learning-and-spectral | 90.50 |
shallow-bayesian-meta-learning-for-real-world | 88.79 |
exploring-complementary-strengths-of | 89.74 |
rethinking-generalization-in-few-shot-1 | 88.90 |
context-aware-meta-learning | 93.5 |
meta-learning-with-differentiable-convex | 85 |
easy-ensemble-augmented-shot-y-shaped | 90.47 |
instance-credibility-inference-for-few-shot | 84.32 |
transfer-learning-based-few-shot | 90.73 |
easy-ensemble-augmented-shot-y-shaped | 89.0 |
match-them-up-visually-explainable-few-shot | 82.93 |
charting-the-right-manifold-manifold-mixup | 87.47 |
sparse-spatial-transformers-for-few-shot | 86.61 |
task-augmentation-by-rotating-for-meta | 88.38 |
sill-net-feature-augmentation-with-separated | 91.09 |
constellation-nets-for-few-shot-learning | 86.8 |
relational-embedding-for-few-shot | 86.60 |
self-supervised-knowledge-distillation-for | 88.9 |
task-augmentation-by-rotating-for-meta | 88.33 |
the-balanced-pairwise-affinities-feature | 92.83 |
learning-to-compare-relation-network-for-few | 69.3 |
easy-ensemble-augmented-shot-y-shaped | 88.38 |
region-comparison-network-for-interpretable | 82.96 |
complementing-representation-deficiency-in | 85.2 |
empirical-bayes-transductive-meta-learning-1 | 85.3 |
fast-and-generalized-adaptation-for-few-shot | 89.3 |
pseudo-shots-few-shot-learning-with-auxiliary | 89.12 |
geometric-mean-improves-loss-for-few-shot | 85.08 |
squeezing-backbone-feature-distributions-to | 91.86 |
leveraging-the-feature-distribution-in | 90.68 |
complementing-representation-deficiency-in | 86.8 |