Feature Upsampling On Imagenet
المقاييس
Average Drop
Average Increase
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
اسم النموذج | Average Drop | Average Increase | Paper Title | Repository |
---|---|---|---|---|
Strided | 11.48 | 4.97 | Deep ViT Features as Dense Visual Descriptors | |
FeatUp (Implicit) | 8.84 | 5.60 | FeatUp: A Model-Agnostic Framework for Features at Any Resolution | |
FeatUp (JBU) | 9.83 | 5.24 | FeatUp: A Model-Agnostic Framework for Features at Any Resolution | |
DIP | 10.57 | 5.16 | Deep Image Prior | |
SAPA | 10.62 | 4.85 | SAPA: Similarity-Aware Point Affiliation for Feature Upsampling | |
CARAFE | 10.24 | 4.96 | CARAFE: Content-Aware ReAssembly of FEatures |
0 of 6 row(s) selected.