HyperAI

Domain Generalization On Vizwiz

المقاييس

Accuracy - All Images
Accuracy - Clean Images
Accuracy - Corrupted Images

النتائج

نتائج أداء النماذج المختلفة على هذا المعيار القياسي

جدول المقارنة
اسم النموذجAccuracy - All ImagesAccuracy - Clean ImagesAccuracy - Corrupted Images
efficientnet-rethinking-model-scaling-for41.746.435.6
19041148635.639.528.5
adversarial-examples-improve-image48.151.442.5
1904114864145.834.8
19041148641.545.335.2
deep-residual-learning-for-image-recognition46.350.140.5
aggregated-residual-transformations-for-deep51.754.848.1
imagenet-trained-cnns-are-biased-towards25.33020.4
augmix-a-simple-data-processing-method-to42.246.435.9
efficientnet-rethinking-model-scaling-for38.142.831.4
very-deep-convolutional-networks-for-large34.739.528.5
19041148638.342.832.4
19041148638.742.732
measuring-robustness-to-natural-distribution38.843.532.5
adversarial-examples-improve-image49.151.744
measuring-robustness-to-natural-distribution35.739.630.2
adversarial-examples-improve-image49.653.244.7
very-deep-convolutional-networks-for-large32.937.125.8
autoaugment-learning-augmentation-strategies44.348.638.2
volo-vision-outlooker-for-visual-recognition57.259.751.8
measuring-robustness-to-natural-distribution36.540.930.7
an-image-is-worth-16x16-words-transformers-1-450-
adversarial-examples-improve-image42.446.736.2
19041148640.345.133.4
a-convnet-for-the-2020s53.55646.9
autoaugment-learning-augmentation-policies34.940.127.3
19041148622.726.818.4
deep-residual-learning-for-image-recognition42.947.737.1
adversarial-examples-improve-image50.553.245.8
1904114864044.734.3
deep-residual-learning-for-image-recognition47.551.343.3
19041148634.539.427.8
19041148638.343.131.7
autoaugment-learning-augmentation-policies39.744.432.8
measuring-robustness-to-natural-distribution36.440.630.2
the-many-faces-of-robustness-a-critical41.34634.9
19041148638.342.931.9
measuring-robustness-to-natural-distribution37.441.430.9
very-deep-convolutional-networks-for-large36.741.131.1
the-many-faces-of-robustness-a-critical40.344.534.1
adversarial-examples-improve-image44.34838.2
19041148637.241.831.3
very-deep-convolutional-networks-for-large32.436.526.4
very-deep-convolutional-networks-for-large31.536.125.2
autoaugment-learning-augmentation-strategies4549.939.1
an-image-is-worth-16x16-words-transformers-149--
19041148637.242.529.9
very-deep-convolutional-networks-for-large36.240.829.4
autoaugment-learning-augmentation-strategies45.850.739.3
efficientnet-rethinking-model-scaling-for36.741.530.9
measuring-robustness-to-natural-distribution36.14029.7
adversarial-examples-improve-image49.75245
19041148635.539.230.3
autoaugment-learning-augmentation-strategies45.750.239.8
measuring-robustness-to-natural-distribution38.242.432.4
autoaugment-learning-augmentation-policies41.645.834.3
19041148635.840.129.1
imagenet-trained-cnns-are-biased-towards39.244.632.4
19041148641.145.235.1
19041148635.540.128.7
19041148623.126.817.5
measuring-robustness-to-natural-distribution36.541.330.3
very-deep-convolutional-networks-for-large33.738.428.3
adversarial-training-for-free26.730.920.5
efficientnet-rethinking-model-scaling-for42.847.337
19041148622.826.818.2
imagenet-trained-cnns-are-biased-towards38.242.732.5
resnet-strikes-back-an-improved-training48.944.439.1
very-deep-convolutional-networks-for-large34.739.329
measuring-robustness-to-natural-distribution38.842.933.6
efficientnet-rethinking-model-scaling-for40.745.334.2
measuring-robustness-to-natural-distribution35.939.930.3
19041148633.538.526.7
randaugment-practical-data-augmentation-with42.147.335.5
adversarial-examples-improve-image40.544.934.2
measuring-robustness-to-natural-distribution38.342.731.4
efficientnet-rethinking-model-scaling-for34.238.427.4
measuring-robustness-to-natural-distribution30.234.324.3
19041148641.746.135.7
autoaugment-learning-augmentation-policies42.647.534.9
19041148636.942.130.6
19041148638.342.832.3
bag-of-tricks-for-image-classification-with39.743.535.8
1904114863741.730.8
adversarial-examples-improve-image45.549.539.8
measuring-robustness-to-natural-distribution32.736.628.3
1904114863640.330.4
19041148635.14028.2
19041148634.738.927.7
randaugment-practical-data-augmentation-with4548.738.9