HyperAI

Domain Generalization On Imagenet Sketch

المقاييس

Top-1 accuracy

النتائج

نتائج أداء النماذج المختلفة على هذا المعيار القياسي

اسم النموذج
Top-1 accuracy
Paper TitleRepository
Model soups (ViT-G/14)74.24Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time
Pyramid Adversarial Training Improves ViT41.04Pyramid Adversarial Training Improves ViT Performance
MAE (ViT-H, 448)50.9Masked Autoencoders Are Scalable Vision Learners
CAFormer-B36 (IN21K, 384)54.5MetaFormer Baselines for Vision
ConvFormer-B36 (IN21K, 384)52.9MetaFormer Baselines for Vision
Pyramid Adversarial Training Improves ViT (Im21k)46.03Pyramid Adversarial Training Improves ViT Performance
CAFormer-B3642.5MetaFormer Baselines for Vision
MAE+DAT (ViT-H)50.03Enhance the Visual Representation via Discrete Adversarial Training
ConvFormer-B3639.5MetaFormer Baselines for Vision
Discrete Adversarial Distillation (ViT-B, 224)46.1Distilling Out-of-Distribution Robustness from Vision-Language Foundation Models
Model soups (BASIC-L)77.18Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time
CAFormer-B36 (IN21K)52.8MetaFormer Baselines for Vision
ConvFormer-B36 (IN21K)52.7MetaFormer Baselines for Vision
GPaCo (ViT-L)48.3Generalized Parametric Contrastive Learning
Sequencer2D-L35.8Sequencer: Deep LSTM for Image Classification
CAR-FT (CLIP, ViT-L/14@336px)65.5Context-Aware Robust Fine-Tuning-
SEER (RegNet10B)45.6Vision Models Are More Robust And Fair When Pretrained On Uncurated Images Without Supervision
DrViT44.72Discrete Representations Strengthen Vision Transformer Robustness
ConvNeXt-XL (Im21k, 384)55.0A ConvNet for the 2020s
LLE (ViT-H/14, MAE, Edge Aug)53.39A Whac-A-Mole Dilemma: Shortcuts Come in Multiples Where Mitigating One Amplifies Others
0 of 20 row(s) selected.