HyperAI

Domain Generalization On Imagenet R

المقاييس

Top-1 Error Rate

النتائج

نتائج أداء النماذج المختلفة على هذا المعيار القياسي

جدول المقارنة
اسم النموذجTop-1 Error Rate
model-soups-averaging-weights-of-multiple4.54
generalized-parametric-contrastive-learning39.7
vision-models-are-more-robust-and-fair-when43.9
pyramid-adversarial-training-improves-vit42.16
improving-vision-transformers-by-revisiting40.3
imagenet-trained-cnns-are-biased-towards58.5
when-vision-transformers-outperform-resnets76.5
a-whac-a-mole-dilemma-shortcuts-come-in31.3
model-soups-averaging-weights-of-multiple3.90
masked-autoencoders-are-scalable-vision33.5
prime-a-few-primitives-can-boost-robustness53.7
metaformer-baselines-for-vision48.9
context-aware-robust-fine-tuning10.3
metaformer-baselines-for-vision47.8
a-convnet-for-the-2020s31.8
when-vision-transformers-outperform-resnets71.9
understanding-the-robustness-in-vision28.9
rethinking-the-design-principles-of-robust56.1
rethinking-the-design-principles-of-robust52.3
metaformer-baselines-for-vision33.5
when-vision-transformers-outperform-resnets73.6
metaformer-baselines-for-vision46.1
sequencer-deep-lstm-for-image-classification51.9
a-whac-a-mole-dilemma-shortcuts-come-in33.1
metaformer-baselines-for-vision45
deep-residual-learning-for-image-recognition63.9
augmix-a-simple-data-processing-method-to58.9
the-many-faces-of-robustness-a-critical57.8
pyramid-adversarial-training-improves-vit46.08
discrete-representations-strengthen-vision-144.74
metaformer-baselines-for-vision31.7
distilling-out-of-distribution-robustness-134.9
enhance-the-visual-representation-via34.39
metaformer-baselines-for-vision29.6
rethinking-the-design-principles-of-robust51.3
fully-attentional-networks-with-self-emerging-143.4
the-many-faces-of-robustness-a-critical 53.2
prime-a-few-primitives-can-boost-robustness57.1
metaformer-baselines-for-vision34.7