Domain Generalization On Imagenet R
المقاييس
Top-1 Error Rate
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
جدول المقارنة
اسم النموذج | Top-1 Error Rate |
---|---|
model-soups-averaging-weights-of-multiple | 4.54 |
generalized-parametric-contrastive-learning | 39.7 |
vision-models-are-more-robust-and-fair-when | 43.9 |
pyramid-adversarial-training-improves-vit | 42.16 |
improving-vision-transformers-by-revisiting | 40.3 |
imagenet-trained-cnns-are-biased-towards | 58.5 |
when-vision-transformers-outperform-resnets | 76.5 |
a-whac-a-mole-dilemma-shortcuts-come-in | 31.3 |
model-soups-averaging-weights-of-multiple | 3.90 |
masked-autoencoders-are-scalable-vision | 33.5 |
prime-a-few-primitives-can-boost-robustness | 53.7 |
metaformer-baselines-for-vision | 48.9 |
context-aware-robust-fine-tuning | 10.3 |
metaformer-baselines-for-vision | 47.8 |
a-convnet-for-the-2020s | 31.8 |
when-vision-transformers-outperform-resnets | 71.9 |
understanding-the-robustness-in-vision | 28.9 |
rethinking-the-design-principles-of-robust | 56.1 |
rethinking-the-design-principles-of-robust | 52.3 |
metaformer-baselines-for-vision | 33.5 |
when-vision-transformers-outperform-resnets | 73.6 |
metaformer-baselines-for-vision | 46.1 |
sequencer-deep-lstm-for-image-classification | 51.9 |
a-whac-a-mole-dilemma-shortcuts-come-in | 33.1 |
metaformer-baselines-for-vision | 45 |
deep-residual-learning-for-image-recognition | 63.9 |
augmix-a-simple-data-processing-method-to | 58.9 |
the-many-faces-of-robustness-a-critical | 57.8 |
pyramid-adversarial-training-improves-vit | 46.08 |
discrete-representations-strengthen-vision-1 | 44.74 |
metaformer-baselines-for-vision | 31.7 |
distilling-out-of-distribution-robustness-1 | 34.9 |
enhance-the-visual-representation-via | 34.39 |
metaformer-baselines-for-vision | 29.6 |
rethinking-the-design-principles-of-robust | 51.3 |
fully-attentional-networks-with-self-emerging-1 | 43.4 |
the-many-faces-of-robustness-a-critical | 53.2 |
prime-a-few-primitives-can-boost-robustness | 57.1 |
metaformer-baselines-for-vision | 34.7 |