Domain Generalization On Imagenet C
المقاييس
Top 1 Accuracy
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
جدول المقارنة
اسم النموذج | Top 1 Accuracy |
---|---|
when-vision-transformers-outperform-resnets | 48.9 |
amplitude-phase-recombination-rethinking | - |
metaformer-baselines-for-vision | - |
metaformer-baselines-for-vision | - |
understanding-the-robustness-in-vision | 67.7 |
global-filter-networks-for-image | - |
masked-autoencoders-are-scalable-vision | - |
pushpull-net-inhibition-driven-resnet-robust | 69.4 |
a-convnet-for-the-2020s | - |
fully-attentional-networks-with-self-emerging-1 | 69.2 |
metaformer-baselines-for-vision | - |
quality-agnostic-image-recognition-via | - |
amplitude-phase-recombination-rethinking | - |
dinov2-learning-robust-visual-features | - |
discrete-representations-strengthen-vision-1 | - |
diffusion-based-adaptation-for-classification | 61 |
augmix-a-simple-data-processing-method-to | - |
dinov2-learning-robust-visual-features | - |
diffusion-based-adaptation-for-classification | 52.1 |
generalized-parametric-contrastive-learning | - |
dinov2-learning-robust-visual-features | - |
discrete-representations-strengthen-vision-1 | - |
understanding-the-robustness-in-vision | 70.5 |
enhance-the-visual-representation-via | - |
improving-vision-transformers-by-revisiting | - |
dinov2-learning-robust-visual-features | - |
rethinking-the-design-principles-of-robust | - |
prime-a-few-primitives-can-boost-robustness | 55.0 |
rethinking-the-design-principles-of-robust | - |
quality-agnostic-image-recognition-via | - |
diffusion-based-adaptation-for-classification | 64.3 |
when-vision-transformers-outperform-resnets | 55 |
prime-a-few-primitives-can-boost-robustness | 56.4 |
metaformer-baselines-for-vision | - |
group-wise-inhibition-based-feature | - |
the-many-faces-of-robustness-a-critical | - |
imagenet-trained-cnns-are-biased-towards | - |
sequencer-deep-lstm-for-image-classification | - |
discrete-representations-strengthen-vision-1 | - |
when-vision-transformers-outperform-resnets | 56.5 |
understanding-the-robustness-in-vision | 73.6 |
prime-a-few-primitives-can-boost-robustness | 59.9 |
pyramid-adversarial-training-improves-vit | - |
metaformer-baselines-for-vision | - |
benchmarking-neural-network-robustness-to-2 | - |
rethinking-the-design-principles-of-robust | - |
pyramid-adversarial-training-improves-vit | - |