HyperAI

Domain Generalization On Imagenet A

المقاييس

Top-1 accuracy %

النتائج

نتائج أداء النماذج المختلفة على هذا المعيار القياسي

جدول المقارنة
اسم النموذجTop-1 accuracy %
distilling-out-of-distribution-robustness-17.7
cutmix-regularization-strategy-to-train7.3
rethinking-the-design-principles-of-robust14.4
rethinking-the-design-principles-of-robust25.7
improved-regularization-of-convolutional4.4
natural-adversarial-examples0
a-continual-development-methodology-for-large84.53
metaformer-baselines-for-vision69.4
masked-autoencoders-are-scalable-vision76.7
metaformer-baselines-for-vision48.5
understanding-the-robustness-in-vision74.5
deep-residual-learning-for-image-recognition4.2
model-soups-averaging-weights-of-multiple94.17
fully-attentional-networks-with-self-emerging-146.1
transnext-robust-foveal-visual-perception-for50.6
metaformer-baselines-for-vision79.5
model-soups-averaging-weights-of-multiple92.67
on-feature-normalization-and-data8.4
imagenet-trained-cnns-are-biased-towards2.3
metaformer-baselines-for-vision55.3
enhance-the-visual-representation-via68.92
pyramid-adversarial-training-improves-vit36.41
mixup-beyond-empirical-risk-minimization6.6
pyramid-adversarial-training-improves-vit62.44
your-diffusion-model-is-secretly-a-zero-shot30.2
context-aware-robust-fine-tuning81.5
rethinking-the-design-principles-of-robust28.5
metaformer-baselines-for-vision63.3
vision-models-are-more-robust-and-fair-when52.7
transnext-robust-foveal-visual-perception-for47.1
sequencer-deep-lstm-for-image-classification35.5
distilling-out-of-distribution-robustness-131.8
metaformer-baselines-for-vision61.9
global-filter-networks-for-image14.3
metaformer-baselines-for-vision73.5
metaformer-baselines-for-vision40.1
transnext-robust-foveal-visual-perception-for58.3
a-convnet-for-the-2020s69.3
transnext-robust-foveal-visual-perception-for61.6