Domain Generalization On Imagenet A
المقاييس
Top-1 accuracy %
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
جدول المقارنة
اسم النموذج | Top-1 accuracy % |
---|---|
distilling-out-of-distribution-robustness-1 | 7.7 |
cutmix-regularization-strategy-to-train | 7.3 |
rethinking-the-design-principles-of-robust | 14.4 |
rethinking-the-design-principles-of-robust | 25.7 |
improved-regularization-of-convolutional | 4.4 |
natural-adversarial-examples | 0 |
a-continual-development-methodology-for-large | 84.53 |
metaformer-baselines-for-vision | 69.4 |
masked-autoencoders-are-scalable-vision | 76.7 |
metaformer-baselines-for-vision | 48.5 |
understanding-the-robustness-in-vision | 74.5 |
deep-residual-learning-for-image-recognition | 4.2 |
model-soups-averaging-weights-of-multiple | 94.17 |
fully-attentional-networks-with-self-emerging-1 | 46.1 |
transnext-robust-foveal-visual-perception-for | 50.6 |
metaformer-baselines-for-vision | 79.5 |
model-soups-averaging-weights-of-multiple | 92.67 |
on-feature-normalization-and-data | 8.4 |
imagenet-trained-cnns-are-biased-towards | 2.3 |
metaformer-baselines-for-vision | 55.3 |
enhance-the-visual-representation-via | 68.92 |
pyramid-adversarial-training-improves-vit | 36.41 |
mixup-beyond-empirical-risk-minimization | 6.6 |
pyramid-adversarial-training-improves-vit | 62.44 |
your-diffusion-model-is-secretly-a-zero-shot | 30.2 |
context-aware-robust-fine-tuning | 81.5 |
rethinking-the-design-principles-of-robust | 28.5 |
metaformer-baselines-for-vision | 63.3 |
vision-models-are-more-robust-and-fair-when | 52.7 |
transnext-robust-foveal-visual-perception-for | 47.1 |
sequencer-deep-lstm-for-image-classification | 35.5 |
distilling-out-of-distribution-robustness-1 | 31.8 |
metaformer-baselines-for-vision | 61.9 |
global-filter-networks-for-image | 14.3 |
metaformer-baselines-for-vision | 73.5 |
metaformer-baselines-for-vision | 40.1 |
transnext-robust-foveal-visual-perception-for | 58.3 |
a-convnet-for-the-2020s | 69.3 |
transnext-robust-foveal-visual-perception-for | 61.6 |