HyperAI

Domain Generalization On Imagenet A

المقاييس

Top-1 accuracy %

النتائج

نتائج أداء النماذج المختلفة على هذا المعيار القياسي

اسم النموذج
Top-1 accuracy %
Paper TitleRepository
Discrete Adversarial Distillation (ResNet-50)7.7Distilling Out-of-Distribution Robustness from Vision-Language Foundation Models
CutMix (ResNet-50)7.3CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features
RVT-Ti*14.4Towards Robust Vision Transformer
RVT-S*25.7Towards Robust Vision Transformer
Cutout (ResNet-50)4.4Improved Regularization of Convolutional Neural Networks with Cutout
ResNet-500Natural Adversarial Examples
µ2Net+ (ViT-L/16)84.53A Continual Development Methodology for Large-scale Multitask Dynamic ML Systems
CAFormer-B36 (IN-21K)69.4MetaFormer Baselines for Vision
MAE (ViT-H, 448)76.7Masked Autoencoders Are Scalable Vision Learners
CAFormer-B3648.5MetaFormer Baselines for Vision
FAN-Hybrid-L(IN-21K, 384)74.5Understanding The Robustness in Vision Transformers
ResNet-50 (300 Epochs)4.2Deep Residual Learning for Image Recognition
Model soups (BASIC-L)94.17Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time
FAN-L-Hybrid+STL46.1Fully Attentional Networks with Self-emerging Token Labeling
TransNeXt-Base (IN-1K supervised, 224)50.6TransNeXt: Robust Foveal Visual Perception for Vision Transformers
CAFormer-B36 (IN-21K, 384)79.5MetaFormer Baselines for Vision
Model soups (ViT-G/14)92.67Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time
CutMix+MoEx (ResNet-50)8.4On Feature Normalization and Data Augmentation
Stylized ImageNet (ResNet-50)2.3ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness
ConvFormer-B36 (384)55.3MetaFormer Baselines for Vision
0 of 39 row(s) selected.