HyperAI
HyperAI
الرئيسية
الأخبار
الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
العربية
HyperAI
HyperAI
Toggle sidebar
البحث في الموقع...
⌘
K
البحث في الموقع...
⌘
K
الرئيسية
SOTA
توليد النص من البيانات
Data To Text Generation On Webnlg
Data To Text Generation On Webnlg
المقاييس
BLEU
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
BLEU
Paper Title
Repository
Control Prefixes (A1, A2, T5-large)
67.15
Control Prefixes for Parameter-Efficient Text Generation
Control Prefixes (A1, T5-large)
67.32
Control Prefixes for Parameter-Efficient Text Generation
TrICy (trK = trk* = 0.24)
64.73
TrICy: Trigger-guided Data-to-text Generation with Intent aware Attention-Copy
-
T5-B Baseline
67.04
FactSpotter: Evaluating the Factual Faithfulness of Graph-to-Text Generation
-
Multiview-G2S
62.89
Structural Information Preserving for Graph-to-Text Generation
BestPlan
47.4
Step-by-Step: Separating Planning from Realization in Neural Data-to-Text Generation
TrICy (trK = 0)
64.08
TrICy: Trigger-guided Data-to-text Generation with Intent aware Attention-Copy
-
E2E GRU
57.20
Neural data-to-text generation: A comparison between pipeline and end-to-end architectures
T5-small
65.05
Investigating Pretrained Language Models for Graph-to-Text Generation
CGE-LW (Levi Graph)
63.69
Modeling Global and Local Node Contexts for Text Generation from Knowledge Graphs
JointGT Baseline
67.08
FactSpotter: Evaluating the Factual Faithfulness of Graph-to-Text Generation
-
HTML (fine-tuning)
65.4
HTLM: Hyper-Text Pre-Training and Prompting of Language Models
-
GCN EC
55.9
Deep Graph Convolutional Encoders for Structured Data to Text Generation
T5-Base
64.7
Text-to-Text Pre-Training for Data-to-Text Tasks
T5-large + Wiki + Position
66.07
Stage-wise Fine-tuning for Graph-to-Text Generation
BART (TextBox 2.0)
-
TextBox 2.0: A Text Generation Library with Pre-trained Language Models
Graformer
61.15
Modeling Graph Structure via Relative Position for Text Generation from Knowledge Graphs
-
GTR-LSTM (entity masking)
58.6
GTR-LSTM: A Triple Encoder for Sentence Generation from RDF Data
-
0 of 18 row(s) selected.
Previous
Next