HyperAI
HyperAI
الرئيسية
الأخبار
أحدث الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
العربية
HyperAI
HyperAI
Toggle sidebar
البحث في الموقع...
⌘
K
الرئيسية
SOTA
توليد النص من البيانات
Data To Text Generation On Webnlg
Data To Text Generation On Webnlg
المقاييس
BLEU
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
BLEU
Paper Title
Repository
Control Prefixes (A1, A2, T5-large)
67.15
Control Prefixes for Parameter-Efficient Text Generation
-
Control Prefixes (A1, T5-large)
67.32
Control Prefixes for Parameter-Efficient Text Generation
-
TrICy (trK = trk* = 0.24)
64.73
TrICy: Trigger-guided Data-to-text Generation with Intent aware Attention-Copy
-
T5-B Baseline
67.04
FactSpotter: Evaluating the Factual Faithfulness of Graph-to-Text Generation
Multiview-G2S
62.89
Structural Information Preserving for Graph-to-Text Generation
-
BestPlan
47.4
Step-by-Step: Separating Planning from Realization in Neural Data-to-Text Generation
-
TrICy (trK = 0)
64.08
TrICy: Trigger-guided Data-to-text Generation with Intent aware Attention-Copy
-
E2E GRU
57.20
Neural data-to-text generation: A comparison between pipeline and end-to-end architectures
-
T5-small
65.05
Investigating Pretrained Language Models for Graph-to-Text Generation
-
CGE-LW (Levi Graph)
63.69
Modeling Global and Local Node Contexts for Text Generation from Knowledge Graphs
-
JointGT Baseline
67.08
FactSpotter: Evaluating the Factual Faithfulness of Graph-to-Text Generation
HTML (fine-tuning)
65.4
HTLM: Hyper-Text Pre-Training and Prompting of Language Models
-
GCN EC
55.9
Deep Graph Convolutional Encoders for Structured Data to Text Generation
-
T5-Base
64.7
Text-to-Text Pre-Training for Data-to-Text Tasks
-
T5-large + Wiki + Position
66.07
Stage-wise Fine-tuning for Graph-to-Text Generation
-
BART (TextBox 2.0)
-
TextBox 2.0: A Text Generation Library with Pre-trained Language Models
-
Graformer
61.15
Modeling Graph Structure via Relative Position for Text Generation from Knowledge Graphs
-
GTR-LSTM (entity masking)
58.6
GTR-LSTM: A Triple Encoder for Sentence Generation from RDF Data
-
0 of 18 row(s) selected.
Previous
Next
Data To Text Generation On Webnlg | SOTA | HyperAI