HyperAI
الرئيسية
الأخبار
أحدث الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
العربية
HyperAI
Toggle sidebar
البحث في الموقع...
⌘
K
الرئيسية
SOTA
Architecture Search
Neural Architecture Search On Nas Bench 201 2
Neural Architecture Search On Nas Bench 201 2
المقاييس
Accuracy (Test)
Accuracy (Val)
Search time (s)
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
Accuracy (Test)
Accuracy (Val)
Search time (s)
Paper Title
Repository
DARTS-V1
15.61
15.03
10890
-
-
KNAS (k=40)
71.05
-
-
KNAS: Green Neural Architecture Search
DSNAS
-
31.01
-
DSNAS: Direct Neural Architecture Search without Parameter Retraining
SETN
56.87
59.05
31010
One-Shot Neural Architecture Search via Self-Evaluated Template Network
Shapley-NAS
73.51
73.49
-
Shapley-NAS: Discovering Operation Contribution for Neural Architecture Search
IS-DARTS
73.51
73.49
-
IS-DARTS: Stabilizing DARTS through Precise Measurement on Candidate Importance
RF-DARTS
72.94
72.95
-
Differentiable Architecture Search with Random Features
-
α-DARTS
73.16
73.21
-
$α$ DARTS Once More: Enhancing Differentiable Architecture Search by Masked Image Modeling
-
SNAS
69.34
69.69
-
SNAS: Stochastic Neural Architecture Search
DARTS-V2
15.61
15.03
29902
-
-
iDARTS
70.83
70.57
-
iDARTS: Differentiable Architecture Search with Stochastic Implicit Gradients
DrNAS
73.51
73.49
-
DrNAS: Dirichlet Neural Architecture Search
GAEA DARTS (ERM)
73.43
-
-
Geometry-Aware Gradient Algorithms for Neural Architecture Search
ENAS
15.61
15.03
13315
Efficient Neural Architecture Search via Parameters Sharing
-
BaLeNAS-TF
72.95
72.67
-
BaLeNAS: Differentiable Architecture Search via the Bayesian Learning Rule
-
GenNAS
72.56
-
1080
Generic Neural Architecture Search via Regression
DiNAS
73.51
73.49
15.36
Multi-conditioned Graph Diffusion for Neural Architecture Search
arch2vec
73.37
73.35
-
Does Unsupervised Architecture Representation Learning Help Neural Architecture Search?
CR-LSO
73.47
73.44
-
CR-LSO: Convex Neural Architecture Optimization in the Latent Space of Graph Variational Autoencoder with Input Convex Neural Networks
DARTS-
71.53
71.36
-
DARTS-: Robustly Stepping out of Performance Collapse Without Indicators
0 of 40 row(s) selected.
Previous
Next