HyperAI
الرئيسية
الأخبار
أحدث الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
العربية
HyperAI
Toggle sidebar
البحث في الموقع...
⌘
K
الرئيسية
SOTA
Architecture Search
Neural Architecture Search On Nas Bench 201 1
Neural Architecture Search On Nas Bench 201 1
المقاييس
Accuracy (Test)
Accuracy (Val)
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
Accuracy (Test)
Accuracy (Val)
Paper Title
Repository
NAR
94.33
91.44
Generalized Global Ranking-Aware Neural Architecture Ranker for Efficient Image Classifier Search
β-DARTS
94.36
91.55
$β$-DARTS: Beta-Decay Regularization for Differentiable Architecture Search
DARTS-V2
54.30
39.77
-
-
GDAS
93.61
89.89
Searching for A Robust Neural Architecture in Four GPU Hours
arch2vec
94.18
91.41
Does Unsupervised Architecture Representation Learning Help Neural Architecture Search?
EPE-NAS (N=10)
92.63
89.90
EPE-NAS: Efficient Performance Estimation Without Training for Neural Architecture Search
SNAS
92.77
90.10
SNAS: Stochastic Neural Architecture Search
Shapley-NAS
94.37
91.61
Shapley-NAS: Discovering Operation Contribution for Neural Architecture Search
DARTS-
93.80
91.03
DARTS-: Robustly Stepping out of Performance Collapse Without Indicators
SETN
86.19
82.25
-
-
DARTS-V1
54.30
39.77
-
-
NAS-LID+RSPS
92.9
89.74
NAS-LID: Efficient Neural Architecture Search with Local Intrinsic Dimension
DU-DARTS
93.86
91.21
DU-DARTS: Decreasing the Uncertainty of Differentiable Architecture Search
AG-Net
94.37
91.61
Learning Where To Look -- Generative NAS is Surprisingly Efficient
BaLeNAS-TF
94.33
91.52
BaLeNAS: Differentiable Architecture Search via the Bayesian Learning Rule
-
Λ-DARTS
94.36
91.55
$Λ$-DARTS: Mitigating Performance Collapse by Harmonizing Operation Selection among Cells
GAEA DARTS (ERM)
94.1
-
Geometry-Aware Gradient Algorithms for Neural Architecture Search
RSPS
87.66
84.16
Random Search and Reproducibility for Neural Architecture Search
IS-DARTS
94.36
91.55
IS-DARTS: Stabilizing DARTS through Precise Measurement on Candidate Importance
CATCH-meta
-
91.33
CATCH: Context-based Meta Reinforcement Learning for Transferrable Architecture Search
-
0 of 37 row(s) selected.
Previous
Next