3D Semantic Segmentation On Sensaturban
المقاييس
mIoU
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
اسم النموذج | mIoU | Paper Title | Repository |
---|---|---|---|
TangentConv | 33.30 | Tangent Convolutions for Dense Prediction in 3D | - |
SPGraph | 37.29 | Large-scale Point Cloud Semantic Segmentation with Superpoint Graphs | - |
LCPFormer | 63.4 | LCPFormer: Towards Effective 3D Point Cloud Analysis via Local Context Propagation in Transformers | - |
KPConv | 57.58 | KPConv: Flexible and Deformable Convolution for Point Clouds | - |
SparseConv | 42.66 | 3D Semantic Segmentation with Submanifold Sparse Convolutional Networks | - |
EyeNet | 62.30 | Human Vision Based 3D Point Cloud Semantic Segmentation of Large-Scale Outdoor Scene | - |
SCF-Net | 55.1 | SCF-Net: Learning Spatial Contextual Features for Large-Scale Point Cloud Segmentation | |
BEV-Seg3D-Net | 61.7 | Efficient Urban-scale Point Clouds Segmentation with BEV Projection | - |
0 of 8 row(s) selected.