3D Object Detection On V2X Sim
المقاييس
mAOE
mAP
mASE
mATE
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
اسم النموذج | mAOE | mAP | mASE | mATE | Paper Title | Repository |
---|---|---|---|---|---|---|
V2X-ViT | 0.383 | 22.4 | 0.250 | 0.848 | V2X-ViT: Vehicle-to-Everything Cooperative Perception with Vision Transformer | |
Where2comm | 0.310 | 19.0 | 0.275 | 0.911 | Where2comm: Communication-Efficient Collaborative Perception via Spatial Confidence Maps | |
V2VNet | 0.349 | 21.4 | 0.255 | 0.768 | V2VNet: Vehicle-to-Vehicle Communication for Joint Perception and Prediction | |
DiscoNet | 0.411 | 22.0 | 0.267 | 0.787 | Learning Distilled Collaboration Graph for Multi-Agent Perception | |
QUEST | 0.390 | 23.9 | 0.259 | 0.832 | QUEST: Query Stream for Practical Cooperative Perception |
0 of 5 row(s) selected.