3D Object Detection On Kitti Pedestrian Easy
المقاييس
AP
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
| Paper Title | ||
|---|---|---|
| PVCNN | 73.2 | Point-Voxel CNN for Efficient 3D Deep Learning |
| F-PointNet++ [Qi:2018fd] | 70.00 | Frustum PointNets for 3D Object Detection from RGB-D Data |
| M3DeTR | 67.64 | M3DeTR: Multi-representation, Multi-scale, Mutual-relation 3D Object Detection with Transformers |
| F-PointNet [Qi:2018fd] | 65.08 | Frustum PointNets for 3D Object Detection from RGB-D Data |
0 of 4 row(s) selected.