HyperAI
HyperAI
الرئيسية
الأخبار
أحدث الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
العربية
HyperAI
HyperAI
Toggle sidebar
البحث في الموقع...
⌘
K
الرئيسية
SOTA
كشف الأشياء ثلاثية الأبعاد
3D Object Detection On Kitti Cars Hard
3D Object Detection On Kitti Cars Hard
المقاييس
AP
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
AP
Paper Title
Repository
SA-SSD+EBM
72.78%
Accurate 3D Object Detection using Energy-Based Models
-
Joint
74.30%
Joint 3D Instance Segmentation and Object Detection for Autonomous Driving
-
F-ConvNet
68.08%
Frustum ConvNet: Sliding Frustums to Aggregate Local Point-Wise Features for Amodal 3D Object Detection
-
3D Dual-Fusion
79.39%
3D Dual-Fusion: Dual-Domain Dual-Query Camera-LiDAR Fusion for 3D Object Detection
-
PC-RGNN
75.54%
PC-RGNN: Point Cloud Completion and Graph Neural Network for 3D Object Detection
-
SVGA-Net
74.63%
SVGA-Net: Sparse Voxel-Graph Attention Network for 3D Object Detection from Point Clouds
-
VoxelNet
57.73%
VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection
-
TRTConv
80.38 %
-
-
PV-RCNN++
77.15%
PV-RCNN++: Point-Voxel Feature Set Abstraction With Local Vector Representation for 3D Object Detection
-
UberATG-MMF
68.41%
Multi-Task Multi-Sensor Fusion for 3D Object Detection
-
PC-CNN-V2
64.83%
A General Pipeline for 3D Detection of Vehicles
-
GLENet-VR
78.43%
GLENet: Boosting 3D Object Detectors with Generative Label Uncertainty Estimation
-
M3DeTR
76.96%
M3DeTR: Multi-representation, Multi-scale, Mutual-relation 3D Object Detection with Transformers
-
Voxel R-CNN
77.06
Voxel R-CNN: Towards High Performance Voxel-based 3D Object Detection
-
PGD
9.39%
Probabilistic and Geometric Depth: Detecting Objects in Perspective
-
AVOD + Feature Pyramid
66.38%
Joint 3D Proposal Generation and Object Detection from View Aggregation
-
IPOD
66.33%
IPOD: Intensive Point-based Object Detector for Point Cloud
-
Frustum PointNets
62.19%
Frustum PointNets for 3D Object Detection from RGB-D Data
-
PV-RCNN
76.82%
PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection
-
STD
76.06%
STD: Sparse-to-Dense 3D Object Detector for Point Cloud
-
0 of 25 row(s) selected.
Previous
Next
3D Object Detection On Kitti Cars Hard | SOTA | HyperAI