HyperAI
HyperAI
الرئيسية
الأخبار
الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
العربية
HyperAI
HyperAI
Toggle sidebar
البحث في الموقع...
⌘
K
البحث في الموقع...
⌘
K
الرئيسية
SOTA
الكشف عن الشذوذ والتقسيم ثلاثي الأبعاد
3D Anomaly Detection And Segmentation On
3D Anomaly Detection And Segmentation On
المقاييس
Detection AUROC
Segmentation AUPRO
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
Detection AUROC
Segmentation AUPRO
Paper Title
Repository
Voxel GAN
0.537
0.583
The MVTec 3D-AD Dataset for Unsupervised 3D Anomaly Detection and Localization
Voxel VM
0.571
0.492
The MVTec 3D-AD Dataset for Unsupervised 3D Anomaly Detection and Localization
Back to the Feature: Classical 3D Features are (Almost) All You Need for 3D Anomaly Detection (FPFH)
0.782
0.924
Back to the Feature: Classical 3D Features are (Almost) All You Need for 3D Anomaly Detection
Shape-Guided (only SDF)
0.916
0.931
Shape-Guided: Shape-Guided Dual-Memory Learning for 3D Anomaly Detection
-
CPMF (2D)
0.8918
0.9145
Complementary Pseudo Multimodal Feature for Point Cloud Anomaly Detection
Voxel AE
0.699
0.348
The MVTec 3D-AD Dataset for Unsupervised 3D Anomaly Detection and Localization
3D-ST_128
-
0.833
Anomaly Detection in 3D Point Clouds using Deep Geometric Descriptors
-
CPMF (2D+3D)
0.9515
0.9293
Complementary Pseudo Multimodal Feature for Point Cloud Anomaly Detection
CPMF (3D)
0.8304
0.9230
Complementary Pseudo Multimodal Feature for Point Cloud Anomaly Detection
0 of 9 row(s) selected.
Previous
Next