HyperAIHyperAI초신경
홈뉴스최신 연구 논문튜토리얼데이터셋백과사전SOTALLM 모델GPU 랭킹컨퍼런스
전체 검색
소개
한국어
HyperAIHyperAI초신경
  1. 홈
  2. SOTA
  3. 교통 예측
  4. Traffic Prediction On Pems04

Traffic Prediction On Pems04

평가 지표

12 Steps MAE

평가 결과

이 벤치마크에서 각 모델의 성능 결과

모델 이름
12 Steps MAE
Paper TitleRepository
IDCN19.33--
PDG2Seq18.24PDG2Seq: Periodic Dynamic Graph to Sequence Model for Traffic Flow Prediction
STAEformer18.22STAEformer: Spatio-Temporal Adaptive Embedding Makes Vanilla Transformer SOTA for Traffic Forecasting
Cy2Mixer18.14Enhancing Topological Dependencies in Spatio-Temporal Graphs with Cycle Message Passing Blocks
STD-MAE17.80Spatial-Temporal-Decoupled Masked Pre-training for Spatiotemporal Forecasting
DDGCRN18.45A Decomposition Dynamic graph convolutional recurrent network for traffic forecasting
HTVGNN17.99A novel hybrid time-varying graph neural network for traffic flow forecasting-
FasterSTS18.49FasterSTS: A Faster Spatio-Temporal Synchronous Graph Convolutional Networks for Traffic flow Forecasting-
PDFormer18.32PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for Traffic Flow Prediction
LightCTS-LightCTS: A Lightweight Framework for Correlated Time Series Forecasting
DTRformer18Dynamic Trend Fusion Module for Traffic Flow Prediction
AGCRN19.83Adaptive Graph Convolutional Recurrent Network for Traffic Forecasting
0 of 12 row(s) selected.
HyperAI

학습, 이해, 실천, 커뮤니티와 함께 인공지능의 미래를 구축하다

한국어

소개

회사 소개데이터셋 도움말

제품

뉴스튜토리얼데이터셋백과사전

링크

TVM 한국어Apache TVMOpenBayes

© HyperAI초신경

TwitterBilibili