HyperAI
HyperAI초신경
홈
뉴스
최신 연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
한국어
HyperAI
HyperAI초신경
Toggle sidebar
전체 사이트 검색...
⌘
K
홈
SOTA
세마틱 세그멘테이션
Semantic Segmentation On Vaihingen
Semantic Segmentation On Vaihingen
평가 지표
mIoU
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
mIoU
Paper Title
Repository
CMX
82.87
CMX: Cross-Modal Fusion for RGB-X Semantic Segmentation with Transformers
SegFormer-B0
75.57
SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers
SA-Gate
81.03
Bi-directional Cross-Modality Feature Propagation with Separation-and-Aggregation Gate for RGB-D Semantic Segmentation
HRNet-48
76.75
Deep High-Resolution Representation Learning for Visual Recognition
SegFormer-B2
76.69
SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers
UnetFormer
77.24
UNetFormer: A UNet-like Transformer for Efficient Semantic Segmentation of Remote Sensing Urban Scene Imagery
PSPNet
76.79
Pyramid Scene Parsing Network
LMFNet-2 (
82.49
LMFNet: An Efficient Multimodal Fusion Approach for Semantic Segmentation in High-Resolution Remote Sensing
-
V-FuseNet
79.56
Beyond RGB: Very High Resolution Urban Remote Sensing With Multimodal Deep Networks
SegFormer-B1
76.92
SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers
DeepLabV3+
72.90
Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation
HRNet-18
75.90
Deep High-Resolution Representation Learning for Visual Recognition
FPN
74.86
Feature Pyramid Networks for Object Detection
0 of 13 row(s) selected.
Previous
Next
Semantic Segmentation On Vaihingen | SOTA | HyperAI초신경