HyperAI
HyperAI초신경
홈
플랫폼
문서
뉴스
연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
서비스 약관
개인정보 처리방침
한국어
HyperAI
HyperAI초신경
Toggle Sidebar
전체 사이트 검색...
⌘
K
Command Palette
Search for a command to run...
플랫폼
홈
SOTA
세마틱 세그멘테이션
Semantic Segmentation On Stanford2D3D 1
Semantic Segmentation On Stanford2D3D 1
평가 지표
mAcc
mIoU
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
mAcc
mIoU
Paper Title
SFSS-MMSI (RGB+HHA)
70.68
60.6%
Single Frame Semantic Segmentation Using Multi-Modal Spherical Images
SFSS-MMSI (RGB+Depth+Normal)
69.03
59.43%
Single Frame Semantic Segmentation Using Multi-Modal Spherical Images
SFSS-MMSI (RGB+Normal)
68.79
58.24%
Single Frame Semantic Segmentation Using Multi-Modal Spherical Images
SGAT4PASS(RGB only, Fold 1)
-
56.4%
SGAT4PASS: Spherical Geometry-Aware Transformer for PAnoramic Semantic Segmentation
SFSS-MMSI (RGB+Depth)
68.57
55.49%
Single Frame Semantic Segmentation Using Multi-Modal Spherical Images
SGAT4PASS(RGB only, 3 Fold AVG)
-
55.3%
SGAT4PASS: Spherical Geometry-Aware Transformer for PAnoramic Semantic Segmentation
Trans4PASS+ (Supervised + Small + MS)
-
54.0%
Behind Every Domain There is a Shift: Adapting Distortion-aware Vision Transformers for Panoramic Semantic Segmentation
Trans4PASS (Supervised + Small + MS)
-
53.0%
Bending Reality: Distortion-aware Transformers for Adapting to Panoramic Semantic Segmentation
SFSS-MMSI (RGB Only)
63.96
52.87%
Single Frame Semantic Segmentation Using Multi-Modal Spherical Images
Trans4PASS+ (UDA + MPA + MS)
-
52.3%
Behind Every Domain There is a Shift: Adapting Distortion-aware Vision Transformers for Panoramic Semantic Segmentation
CBFC
65.6
52.2%
Complementary Bi-directional Feature Compression for Indoor 360° Semantic Segmentation with Self-distillation
Trans4PASS (Supervised + Small)
-
52.1%
Bending Reality: Distortion-aware Transformers for Adapting to Panoramic Semantic Segmentation
HoHoNet (ResNet-101)
65.0
52.0%
HoHoNet: 360 Indoor Holistic Understanding with Latent Horizontal Features
Trans4PASS (UDA + MPA + MS)
-
51.2%
Bending Reality: Distortion-aware Transformers for Adapting to Panoramic Semantic Segmentation
Trans4PASS (UDA + MPA)
-
50.8%
Bending Reality: Distortion-aware Transformers for Adapting to Panoramic Semantic Segmentation
PanoFormer
64.5
48.9%
PanoFormer: Panorama Transformer for Indoor 360 Depth Estimation
Trans4PASS (UDA + Source Only)
-
48.1%
Bending Reality: Distortion-aware Transformers for Adapting to Panoramic Semantic Segmentation
FreDSNet
63.1
46.1%
FreDSNet: Joint Monocular Depth and Semantic Segmentation with Fast Fourier Convolutions
Tangent (ResNet-101)
65.2
45.6%
Tangent Images for Mitigating Spherical Distortion
SWSCNN
-
43.4%
Spin-Weighted Spherical CNNs
0 of 25 row(s) selected.
Previous
Next
Semantic Segmentation On Stanford2D3D 1 | SOTA | HyperAI초신경