HyperAI
HyperAI초신경
홈
플랫폼
문서
뉴스
연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
서비스 약관
개인정보 처리방침
한국어
HyperAI
HyperAI초신경
Toggle Sidebar
전체 사이트 검색...
⌘
K
Command Palette
Search for a command to run...
플랫폼
홈
SOTA
세마틱 세그멘테이션
Semantic Segmentation On Ade20K
Semantic Segmentation On Ade20K
평가 지표
GFLOPs
Params (M)
Validation mIoU
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
GFLOPs
Params (M)
Validation mIoU
Paper Title
ONE-PEACE
-
1500
63.0
ONE-PEACE: Exploring One General Representation Model Toward Unlimited Modalities
M3I Pre-training (InternImage-H)
-
1310
62.9
Towards All-in-one Pre-training via Maximizing Multi-modal Mutual Information
InternImage-H
4635
1310
62.9
InternImage: Exploring Large-Scale Vision Foundation Models with Deformable Convolutions
BEiT-3
-
1900
62.8
Image as a Foreign Language: BEiT Pretraining for All Vision and Vision-Language Tasks
EVA
-
1074
62.3
EVA: Exploring the Limits of Masked Visual Representation Learning at Scale
ViT-Adapter-L (Mask2Former, BEiTv2 pretrain)
-
571
61.5
Vision Transformer Adapter for Dense Predictions
FD-SwinV2-G
-
3000
61.4
Contrastive Learning Rivals Masked Image Modeling in Fine-tuning via Feature Distillation
RevCol-H (Mask2Former)
-
2439
61.0
Reversible Column Networks
MasK DINO (SwinL, multi-scale)
-
223
60.8
Mask DINO: Towards A Unified Transformer-based Framework for Object Detection and Segmentation
ViT-Adapter-L (Mask2Former, BEiT pretrain)
-
571
60.5
Vision Transformer Adapter for Dense Predictions
DINOv2 (ViT-g/14 frozen model, w/ ViT-Adapter + Mask2former)
-
1080
60.2
DINOv2: Learning Robust Visual Features without Supervision
SwinV2-G(UperNet)
-
-
59.9
Swin Transformer V2: Scaling Up Capacity and Resolution
SERNet-Former
-
-
59.35
SERNet-Former: Semantic Segmentation by Efficient Residual Network with Attention-Boosting Gates and Attention-Fusion Networks
FocalNet-L (Mask2Former)
-
-
58.5
Focal Modulation Networks
ViT-Adapter-L (UperNet, BEiT pretrain)
-
451
58.4
Vision Transformer Adapter for Dense Predictions
RSSeg-ViT-L (BEiT pretrain)
-
330
58.4
Representation Separation for Semantic Segmentation with Vision Transformers
SeMask (SeMask Swin-L MSFaPN-Mask2Former)
-
-
58.2
SeMask: Semantically Masked Transformers for Semantic Segmentation
SegViT-v2 (BEiT-v2-Large)
-
-
58.2
SegViTv2: Exploring Efficient and Continual Semantic Segmentation with Plain Vision Transformers
SeMask (SeMask Swin-L FaPN-Mask2Former)
-
-
58.2
SeMask: Semantically Masked Transformers for Semantic Segmentation
DiNAT-L (Mask2Former)
-
-
58.1
Dilated Neighborhood Attention Transformer
0 of 230 row(s) selected.
Previous
Next
Semantic Segmentation On Ade20K | SOTA | HyperAI초신경