HyperAI초신경

Image Clustering On Cifar 10

평가 지표

ARI
Accuracy
Backbone
NMI
Train set

평가 결과

이 벤치마크에서 각 모델의 성능 결과

비교 표
모델 이름ARIAccuracyBackboneNMITrain set
clustering-friendly-representation-learning-10.6630.815ResNet-180.711Train+Test
auto-encoding-variational-bayes0.1680.291VAE0.245Train+Test
information-maximization-clustering-via-multi0.80.897ResNet-180.818Train
exploring-a-principled-framework-for-deep-0.972-0.928-
unsupervised-deep-embedding-for-clustering0.1610.301Custom0.25Train+Test
learning-to-classify-images-without-labels0.7580.876ResNet-180.787Train
joint-unsupervised-learning-of-deep0.1380.272-0.192Train+Test
unsupervised-representation-learning-with-10.1760.315GAN0.265Train+Test
learning-to-classify-images-without-labels0.7720.883ResNet-180.797Train
let-go-of-your-labels-with-unsupervised-10.9890.995-0.985-
unsupervised-visual-representation-learning-30.7320.857ResNet-180.766Train
multi-modal-deep-clustering-unsupervised-0.820ResNet180.703-
image-clustering-with-external-guidance0.8310.919-0.833-
dhog-deep-hierarchical-object-grouping0.4920.666ResNet-180.585Train+Test
contrastive-hierarchical-clustering0.7310.839ResNet-500.779Train
breaking-the-reclustering-barrier-in-centroid0.8120.906ResNet-180.826Train
breaking-the-reclustering-barrier-in-centroid0.8180.907ResNet-180.833Train
improving-unsupervised-image-clustering-with-0.903ResNet-18--
information-maximization-clustering-via-multi0.790.891ResNet-180.811Train
deep-adaptive-image-clustering0.3010.522ConvNet0.4Train+Test
deep-clustering-via-probabilistic-ratio-cut-0.975-0.934-
breaking-the-reclustering-barrier-in-centroid0.8240.912ResNet-180.837Train
모델 23-0.325ResNet-Train+Test
stable-cluster-discrimination-for-deep-10.8570.93ResNet-180.861Train
the-balanced-pairwise-affinities-feature0.8660.933ResNet-180.870-
contrastive-clustering0.6370.79ResNet340.705Train+Test
representation-learning-for-clustering-via0.7150.846-0.762Train
the-single-noun-prior-for-image-clustering0.7020.853ViT-B-320.731Train+Test
deep-clustering-for-unsupervised-learning-of-0.374ResNet-34-Train+Test
c3-cross-instance-guided-contrastive0.7070.838-0.748-
exploring-the-limits-of-deep-image-clustering0.8850.94.5ViT-B0.886Train
모델 320.7760.884ResNet-18-Train
deep-comprehensive-correlation-mining-for0.4080.623AlexNet0.496Train+Test
spice-semantic-pseudo-labeling-for-image0.8360.918ResNet-180.850Train
invariant-information-distillation-for0.4110.617ResNet-340.511Train+Test
improving-image-clustering-with-artifacts0.79460.8449ViT-B/140.8682Test
exploring-the-limits-of-deep-image-clustering0.9320.969ViT-L0.926Train
twin-contrastive-learning-for-online0.7800.887ResNet-340.819Train
mitigating-embedding-and-class-assignment-0.81ResNet-18-Train
deep-probability-aggregation-clustering0.8660.934ResNet-340.87-