Image Clustering On Cifar 10
평가 지표
ARI
Accuracy
Backbone
NMI
Train set
평가 결과
이 벤치마크에서 각 모델의 성능 결과
비교 표
모델 이름 | ARI | Accuracy | Backbone | NMI | Train set |
---|---|---|---|---|---|
clustering-friendly-representation-learning-1 | 0.663 | 0.815 | ResNet-18 | 0.711 | Train+Test |
auto-encoding-variational-bayes | 0.168 | 0.291 | VAE | 0.245 | Train+Test |
information-maximization-clustering-via-multi | 0.8 | 0.897 | ResNet-18 | 0.818 | Train |
exploring-a-principled-framework-for-deep | - | 0.972 | - | 0.928 | - |
unsupervised-deep-embedding-for-clustering | 0.161 | 0.301 | Custom | 0.25 | Train+Test |
learning-to-classify-images-without-labels | 0.758 | 0.876 | ResNet-18 | 0.787 | Train |
joint-unsupervised-learning-of-deep | 0.138 | 0.272 | - | 0.192 | Train+Test |
unsupervised-representation-learning-with-1 | 0.176 | 0.315 | GAN | 0.265 | Train+Test |
learning-to-classify-images-without-labels | 0.772 | 0.883 | ResNet-18 | 0.797 | Train |
let-go-of-your-labels-with-unsupervised-1 | 0.989 | 0.995 | - | 0.985 | - |
unsupervised-visual-representation-learning-3 | 0.732 | 0.857 | ResNet-18 | 0.766 | Train |
multi-modal-deep-clustering-unsupervised | - | 0.820 | ResNet18 | 0.703 | - |
image-clustering-with-external-guidance | 0.831 | 0.919 | - | 0.833 | - |
dhog-deep-hierarchical-object-grouping | 0.492 | 0.666 | ResNet-18 | 0.585 | Train+Test |
contrastive-hierarchical-clustering | 0.731 | 0.839 | ResNet-50 | 0.779 | Train |
breaking-the-reclustering-barrier-in-centroid | 0.812 | 0.906 | ResNet-18 | 0.826 | Train |
breaking-the-reclustering-barrier-in-centroid | 0.818 | 0.907 | ResNet-18 | 0.833 | Train |
improving-unsupervised-image-clustering-with | - | 0.903 | ResNet-18 | - | - |
information-maximization-clustering-via-multi | 0.79 | 0.891 | ResNet-18 | 0.811 | Train |
deep-adaptive-image-clustering | 0.301 | 0.522 | ConvNet | 0.4 | Train+Test |
deep-clustering-via-probabilistic-ratio-cut | - | 0.975 | - | 0.934 | - |
breaking-the-reclustering-barrier-in-centroid | 0.824 | 0.912 | ResNet-18 | 0.837 | Train |
모델 23 | - | 0.325 | ResNet | - | Train+Test |
stable-cluster-discrimination-for-deep-1 | 0.857 | 0.93 | ResNet-18 | 0.861 | Train |
the-balanced-pairwise-affinities-feature | 0.866 | 0.933 | ResNet-18 | 0.870 | - |
contrastive-clustering | 0.637 | 0.79 | ResNet34 | 0.705 | Train+Test |
representation-learning-for-clustering-via | 0.715 | 0.846 | - | 0.762 | Train |
the-single-noun-prior-for-image-clustering | 0.702 | 0.853 | ViT-B-32 | 0.731 | Train+Test |
deep-clustering-for-unsupervised-learning-of | - | 0.374 | ResNet-34 | - | Train+Test |
c3-cross-instance-guided-contrastive | 0.707 | 0.838 | - | 0.748 | - |
exploring-the-limits-of-deep-image-clustering | 0.885 | 0.94.5 | ViT-B | 0.886 | Train |
모델 32 | 0.776 | 0.884 | ResNet-18 | - | Train |
deep-comprehensive-correlation-mining-for | 0.408 | 0.623 | AlexNet | 0.496 | Train+Test |
spice-semantic-pseudo-labeling-for-image | 0.836 | 0.918 | ResNet-18 | 0.850 | Train |
invariant-information-distillation-for | 0.411 | 0.617 | ResNet-34 | 0.511 | Train+Test |
improving-image-clustering-with-artifacts | 0.7946 | 0.8449 | ViT-B/14 | 0.8682 | Test |
exploring-the-limits-of-deep-image-clustering | 0.932 | 0.969 | ViT-L | 0.926 | Train |
twin-contrastive-learning-for-online | 0.780 | 0.887 | ResNet-34 | 0.819 | Train |
mitigating-embedding-and-class-assignment | - | 0.81 | ResNet-18 | - | Train |
deep-probability-aggregation-clustering | 0.866 | 0.934 | ResNet-34 | 0.87 | - |