HyperAI
HyperAI초신경
홈
플랫폼
문서
뉴스
연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
서비스 약관
개인정보 처리방침
한국어
HyperAI
HyperAI초신경
Toggle Sidebar
전체 사이트 검색...
⌘
K
Command Palette
Search for a command to run...
플랫폼
홈
SOTA
이미지 클러스터링
Image Clustering On Cifar 10
Image Clustering On Cifar 10
평가 지표
ARI
Accuracy
Backbone
NMI
Train set
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
ARI
Accuracy
Backbone
NMI
Train set
Paper Title
TURTLE (CLIP + DINOv2)
0.989
0.995
-
0.985
-
Let Go of Your Labels with Unsupervised Transfer
PRCut (CLIP)
-
0.975
-
0.934
-
Deep Clustering via Probabilistic Ratio-Cut Optimization
PRO-DSC
-
0.972
-
0.928
-
Exploring a Principled Framework For Deep Subspace Clustering
TEMI CLIP ViT-L (openai)
0.932
0.969
ViT-L
0.926
Train
Exploring the Limits of Deep Image Clustering using Pretrained Models
TEMI DINO ViT-B
0.885
0.94.5
ViT-B
0.886
Train
Exploring the Limits of Deep Image Clustering using Pretrained Models
DPAC
0.866
0.934
ResNet-34
0.87
-
Deep Online Probability Aggregation Clustering
SPICE-BPA
0.866
0.933
ResNet-18
0.870
-
The Balanced-Pairwise-Affinities Feature Transform
SeCu
0.857
0.93
ResNet-18
0.861
Train
Stable Cluster Discrimination for Deep Clustering
TAC
0.831
0.919
-
0.833
-
Image Clustering with External Guidance
SPICE*
0.836
0.918
ResNet-18
0.850
Train
SPICE: Semantic Pseudo-labeling for Image Clustering
DCN+BRB
0.824
0.912
ResNet-18
0.837
Train
Breaking the Reclustering Barrier in Centroid-based Deep Clustering
IDEC+BRB
0.818
0.907
ResNet-18
0.833
Train
Breaking the Reclustering Barrier in Centroid-based Deep Clustering
DEC+BRB
0.812
0.906
ResNet-18
0.826
Train
Breaking the Reclustering Barrier in Centroid-based Deep Clustering
RUC
-
0.903
ResNet-18
-
-
Improving Unsupervised Image Clustering With Robust Learning
IMC-SwAV (Best)
0.8
0.897
ResNet-18
0.818
Train
Information Maximization Clustering via Multi-View Self-Labelling
IMC-SwAV (Avg+-)
0.79
0.891
ResNet-18
0.811
Train
Information Maximization Clustering via Multi-View Self-Labelling
TCL
0.780
0.887
ResNet-34
0.819
Train
Twin Contrastive Learning for Online Clustering
HUME
0.776
0.884
ResNet-18
-
Train
-
SCAN
0.772
0.883
ResNet-18
0.797
Train
SCAN: Learning to Classify Images without Labels
SCAN (Avg)
0.758
0.876
ResNet-18
0.787
Train
SCAN: Learning to Classify Images without Labels
0 of 40 row(s) selected.
Previous
Next
Image Clustering On Cifar 10 | SOTA | HyperAI초신경