HyperAI초신경
홈
뉴스
최신 연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
한국어
HyperAI초신경
Toggle sidebar
전체 사이트 검색...
⌘
K
홈
SOTA
이상치 탐지
Anomaly Detection On Ubnormal
Anomaly Detection On Ubnormal
평가 지표
AUC
RBDC
TBDC
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
AUC
RBDC
TBDC
Paper Title
Repository
Background-Agnostic Framework
61.3%
25.43
56.27
A Background-Agnostic Framework with Adversarial Training for Abnormal Event Detection in Video
TimeSformer
68.5%
0.04
0.05
Is Space-Time Attention All You Need for Video Understanding?
AnomalyRuler
71.9%
-
-
Follow the Rules: Reasoning for Video Anomaly Detection with Large Language Models
MULDE-frame-centric-micro-one-class-classification
72.8%
-
-
MULDE: Multiscale Log-Density Estimation via Denoising Score Matching for Video Anomaly Detection
COSKAD-euclidean
64.9%
-
-
Contracting Skeletal Kinematics for Human-Related Video Anomaly Detection
MIL
50.3%
0.002
0.001
Real-world Anomaly Detection in Surveillance Videos
STG-NF - Unsupervised
71.8%
-
-
Normalizing Flows for Human Pose Anomaly Detection
COSKAD-radial
62.9%
-
-
Contracting Skeletal Kinematics for Human-Related Video Anomaly Detection
COSKAD-hyperbolic
65%
-
-
Contracting Skeletal Kinematics for Human-Related Video Anomaly Detection
BiPOCO
50.7
-
-
BiPOCO: Bi-Directional Trajectory Prediction with Pose Constraints for Pedestrian Anomaly Detection
FPDM
62.7
-
-
Feature Prediction Diffusion Model for Video Anomaly Detection
-
SSMTL++v1
62.1%
25.63
63.53
SSMTL++: Revisiting Self-Supervised Multi-Task Learning for Video Anomaly Detection
-
STG-NF - Supervised
79.2%
-
-
Normalizing Flows for Human Pose Anomaly Detection
MoCoDAD
68.3%
-
-
Multimodal Motion Conditioned Diffusion Model for Skeleton-based Video Anomaly Detection
0 of 14 row(s) selected.
Previous
Next