HyperAI초신경
홈
뉴스
최신 연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
한국어
HyperAI초신경
Toggle sidebar
전체 사이트 검색...
⌘
K
홈
SOTA
6D Pose Estimation Using Rgbd
6D Pose Estimation Using Rgbd On Real275
6D Pose Estimation Using Rgbd On Real275
평가 지표
mAP 10, 2cm
mAP 10, 5cm
mAP 3DIou@50
mAP 3DIou@75
mAP 5, 2cm
mAP 5, 5cm
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
mAP 10, 2cm
mAP 10, 5cm
mAP 3DIou@50
mAP 3DIou@75
mAP 5, 2cm
mAP 5, 5cm
Paper Title
Repository
UDA-COPE
56.9
66.0
82.6
62.5
30.4
34.8
UDA-COPE: Unsupervised Domain Adaptation for Category-level Object Pose Estimation
-
CenterSnap
-
64.3
80.2
-
-
29.1
CenterSnap: Single-Shot Multi-Object 3D Shape Reconstruction and Categorical 6D Pose and Size Estimation
BundleTrack
-
-
-
-
-
87.4
BundleTrack: 6D Pose Tracking for Novel Objects without Instance or Category-Level 3D Models
FS-Net
-
60.8
92.2
63.5
-
28.2
FS-Net: Fast Shape-based Network for Category-Level 6D Object Pose Estimation with Decoupled Rotation Mechanism
gcasp
64.2
76.3
79.0
65.3
46.9
54.7
Generative Category-Level Shape and Pose Estimation with Semantic Primitives
DualPoseNet
50
66.8
79.8
-
-
35.9
DualPoseNet: Category-level 6D Object Pose and Size Estimation Using Dual Pose Network with Refined Learning of Pose Consistency
GPV-Pose
-
73.3
83
64.4
32
42.9
GPV-Pose: Category-level Object Pose Estimation via Geometry-guided Point-wise Voting
GenPose https://github.com/Jiyao06/GenPose
72.4
84.0
-
-
52.1
60.9
GenPose: Generative Category-level Object Pose Estimation via Diffusion Models
-
CPPF
-
44.9
26.4
-
-
16.9
CPPF: Towards Robust Category-Level 9D Pose Estimation in the Wild
NOCS (128 bins)
-
26.7
80.5
-
-
9.5
Normalized Object Coordinate Space for Category-Level 6D Object Pose and Size Estimation
6-PACK
-
-
-
-
-
33.3
6-PACK: Category-level 6D Pose Tracker with Anchor-Based Keypoints
0 of 11 row(s) selected.
Previous
Next