HyperAI
HyperAI초신경
홈
플랫폼
문서
뉴스
연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
서비스 약관
개인정보 처리방침
한국어
HyperAI
HyperAI초신경
Toggle Sidebar
전체 사이트 검색...
⌘
K
Command Palette
Search for a command to run...
플랫폼
홈
SOTA
3D 의미 분할
3D Semantic Segmentation On Toronto 3D
3D Semantic Segmentation On Toronto 3D
평가 지표
OA
mIoU
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
OA
mIoU
Paper Title
SCF-Net
95.50
73.60
SCF-Net: Learning Spatial Contextual Features for Large-Scale Point Cloud Segmentation
RandLANet
93.50
68.40
RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds
KPFCNN
91.71
60.30
Toronto-3D: A Large-scale Mobile LiDAR Dataset for Semantic Segmentation of Urban Roadways
TGNet
91.64
58.34
Toronto-3D: A Large-scale Mobile LiDAR Dataset for Semantic Segmentation of Urban Roadways
MS-PCNN
91.53
58.01
Toronto-3D: A Large-scale Mobile LiDAR Dataset for Semantic Segmentation of Urban Roadways
PointNet++
91.21
56.55
Toronto-3D: A Large-scale Mobile LiDAR Dataset for Semantic Segmentation of Urban Roadways
DGCNN
89.00
49.60
Toronto-3D: A Large-scale Mobile LiDAR Dataset for Semantic Segmentation of Urban Roadways
0 of 7 row(s) selected.
Previous
Next