Command Palette
Search for a command to run...
Text Classification On Yelp 5
評価指標
Accuracy
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
| Paper Title | ||
|---|---|---|
| HAHNN (CNN) | 73.28% | Hierarchical Attentional Hybrid Neural Networks for Document Classification |
| XLNet | 72.95% | XLNet: Generalized Autoregressive Pretraining for Language Understanding |
| BigBird | 72.16% | Big Bird: Transformers for Longer Sequences |
| BERT-ITPT-FiT | 70.58% | How to Fine-Tune BERT for Text Classification? |
| LSTM-reg (single moedl) | 68.7% | Rethinking Complex Neural Network Architectures for Document Classification |
| BERT Finetune + UDA | 67.92% | Unsupervised Data Augmentation for Consistency Training |
| ULMFiT (Small data) | 67.6% | Sampling Bias in Deep Active Classification: An Empirical Study |
0 of 7 row(s) selected.