HyperAI
HyperAI超神経
ホーム
プラットフォーム
ドキュメント
ニュース
論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
利用規約
プライバシーポリシー
日本語
HyperAI
HyperAI超神経
Toggle Sidebar
サイトを検索…
⌘
K
Command Palette
Search for a command to run...
プラットフォーム
ホーム
SOTA
半教師あり画像分類
Semi Supervised Image Classification On Svhn
Semi Supervised Image Classification On Svhn
評価指標
Accuracy
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
Accuracy
Paper Title
Meta Pseudo Labels (WRN-28-2)
98.01 ± 0.07
Meta Pseudo Labels
DoubleMatch
97.90 ± 0.07
DoubleMatch: Improving Semi-Supervised Learning with Self-Supervision
FixMatch (CTA)
97.64±0.19
FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence
EnAET
97.58
EnAET: A Self-Trained framework for Semi-Supervised and Supervised Learning with Ensemble Transformations
UDA
97.54
Unsupervised Data Augmentation for Consistency Training
ReMixMatch
97.17
ReMixMatch: Semi-Supervised Learning with Distribution Alignment and Augmentation Anchoring
MixMatch
96.73
MixMatch: A Holistic Approach to Semi-Supervised Learning
Triple-GAN-V2 (CNN-13)
96.55
Triple Generative Adversarial Networks
ICT (WRN-28-2)
96.47
Interpolation Consistency Training for Semi-Supervised Learning
R2-D2 (CNN-13)
96.36
Repetitive Reprediction Deep Decipher for Semi-Supervised Learning
FCE
96.13
Flow Contrastive Estimation of Energy-Based Models
ICT
96.11
Interpolation Consistency Training for Semi-Supervised Learning
Mean Teacher
96.05
Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results
Triple-GAN-V2 (CNN-13, no aug)
96.04
Triple Generative Adversarial Networks
VAT
94.58
Virtual Adversarial Training: A Regularization Method for Supervised and Semi-Supervised Learning
SESEMI SSL (ConvNet)
94.41
Exploring Self-Supervised Regularization for Supervised and Semi-Supervised Learning
GAN
91.89
Improved Techniques for Training GANs
0 of 17 row(s) selected.
Previous
Next
Semi Supervised Image Classification On Svhn | SOTA | HyperAI超神経