HyperAI
HyperAI超神経
ホーム
ニュース
最新論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
日本語
HyperAI
HyperAI超神経
Toggle sidebar
サイトを検索…
⌘
K
ホーム
SOTA
半教師あり画像分類
Semi Supervised Image Classification On Cifar
Semi Supervised Image Classification On Cifar
評価指標
Percentage error
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
Percentage error
Paper Title
Repository
GAN
15.59
Improved Techniques for Training GANs
-
SimMatch
3.96
SimMatch: Semi-supervised Learning with Similarity Matching
-
Self Meta Pseudo Labels
4.09
Self Meta Pseudo Labels: Meta Pseudo Labels Without The Teacher
-
FixMatch+DM
4.13±0.11
-
-
LiDAM
7.48
LiDAM: Semi-Supervised Learning with Localized Domain Adaptation and Iterative Matching
-
Meta Pseudo Labels (WRN-28-2)
3.89± 0.07
Meta Pseudo Labels
-
LaplaceNet (CNN-13)
4.99±0.08
LaplaceNet: A Hybrid Graph-Energy Neural Network for Deep Semi-Supervised Classification
-
ReMixMatch
5.14
ReMixMatch: Semi-Supervised Learning with Distribution Alignment and Augmentation Anchoring
-
EnAET
4.18
EnAET: A Self-Trained framework for Semi-Supervised and Supervised Learning with Ensemble Transformations
-
DoubleMatch
4.65±0.17
DoubleMatch: Improving Semi-Supervised Learning with Self-Supervision
-
UDA
5.27
Unsupervised Data Augmentation for Consistency Training
-
VAT
11.36
Virtual Adversarial Training: A Regularization Method for Supervised and Semi-Supervised Learning
-
Triple-GAN-V2 (CNN-13)
10.01
Triple Generative Adversarial Networks
-
GLOT-DR
10.6
Global-Local Regularization Via Distributional Robustness
-
FlexMatch
4.19±0.01
FlexMatch: Boosting Semi-Supervised Learning with Curriculum Pseudo Labeling
-
UPS (Shake-Shake)
4.86
In Defense of Pseudo-Labeling: An Uncertainty-Aware Pseudo-label Selection Framework for Semi-Supervised Learning
-
SWSA
5
There Are Many Consistent Explanations of Unlabeled Data: Why You Should Average
-
Diff-SySC
3.26±0.06
Diff-SySC: An Approach Using Diffusion Models for Semi-Supervised Image Classification
-
Dual Student (600)
8.89
Dual Student: Breaking the Limits of the Teacher in Semi-supervised Learning
-
Dash (RA, ours)
4.08±0.06
Dash: Semi-Supervised Learning with Dynamic Thresholding
-
0 of 47 row(s) selected.
Previous
Next
Semi Supervised Image Classification On Cifar | SOTA | HyperAI超神経