HyperAI
HyperAI超神経
ホーム
ニュース
最新論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
日本語
HyperAI
HyperAI超神経
Toggle sidebar
サイトを検索…
⌘
K
ホーム
SOTA
セマンティックセグメンテーション
Semantic Segmentation On S3Dis Area5
Semantic Segmentation On S3Dis Area5
評価指標
Number of params
mAcc
mIoU
oAcc
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
Number of params
mAcc
mIoU
oAcc
Paper Title
Repository
SPoTr
N/A
76.4
70.8
90.7
Self-positioning Point-based Transformer for Point Cloud Understanding
PointVector-XL
-
78.1
72.3
91
PointVector: A Vector Representation In Point Cloud Analysis
DITR
-
-
74.1
-
-
-
KPConv
14.1M
72.8
67.1
-
KPConv: Flexible and Deformable Convolution for Point Clouds
PointMixer
6.5M
77.4
71.4
-
PointMixer: MLP-Mixer for Point Cloud Understanding
TangentConv
N/A
62.2
-
-
Tangent Convolutions for Dense Prediction in 3D
SSP+SPG
290K
68.2
61.7
87.9
Point Cloud Oversegmentation with Graph-Structured Deep Metric Learning
DPC
N/A
-
61.28
-
Dilated Point Convolutions: On the Receptive Field Size of Point Convolutions on 3D Point Clouds
HPEIN
N/A
68.3
61.85
87.18
Hierarchical Point-Edge Interaction Network for Point Cloud Semantic Segmentation
-
SegCloud
N/A
57.4
48.9
-
SEGCloud: Semantic Segmentation of 3D Point Clouds
-
WindowNorm+PointTransformer
N/A
77.9
71.4
91.1
Window Normalization: Enhancing Point Cloud Understanding by Unifying Inconsistent Point Densities
SuperCluster
0.21
-
68.1
-
Scalable 3D Panoptic Segmentation As Superpoint Graph Clustering
Swin3D-L
N/A
80.5
74.5
92.7
Swin3D: A Pretrained Transformer Backbone for 3D Indoor Scene Understanding
PointNet
N/A
-
41.1
-
Point Transformer
SPG(PTv2)
-
79.5
73.3
91.9
Subspace Prototype Guidance for Mitigating Class Imbalance in Point Cloud Semantic Segmentation
Pamba
-
-
73.5
-
Pamba: Enhancing Global Interaction in Point Clouds via State Space Model
-
ConDaFormer
-
78.9
73.5
92.4
ConDaFormer: Disassembled Transformer with Local Structure Enhancement for 3D Point Cloud Understanding
Serialized Piont Mamba
-
-
70.6
-
Serialized Point Mamba: A Serialized Point Cloud Mamba Segmentation Model
-
SCF-Net
N/A
71.8
63.7
87.2
SCF-Net: Learning Spatial Contextual Features for Large-Scale Point Cloud Segmentation
Superpoint Transformer
212K
77.3
68.9
89.5
Efficient 3D Semantic Segmentation with Superpoint Transformer
0 of 60 row(s) selected.
Previous
Next
Semantic Segmentation On S3Dis Area5 | SOTA | HyperAI超神経