HyperAI
HyperAI超神経
ホーム
プラットフォーム
ドキュメント
ニュース
論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
利用規約
プライバシーポリシー
日本語
HyperAI
HyperAI超神経
Toggle Sidebar
サイトを検索…
⌘
K
Command Palette
Search for a command to run...
プラットフォーム
ホーム
SOTA
セマンティックセグメンテーション
Semantic Segmentation On Pascal Voc 2012 Val
Semantic Segmentation On Pascal Voc 2012 Val
評価指標
mIoU
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
mIoU
Paper Title
EfficientNet-L2+NAS-FPN (single scale test, with self-training)
90.0%
Rethinking Pre-training and Self-training
TADP
87.11%
Text-image Alignment for Diffusion-based Perception
Eff-B7 NAS-FPN (Copy-Paste pre-training, single-scale))
86.6%
Simple Copy-Paste is a Strong Data Augmentation Method for Instance Segmentation
ExFuse (ResNeXt-131)
85.8%
ExFuse: Enhancing Feature Fusion for Semantic Segmentation
SpineNet-S143 (single-scale test)
85.64%
Dilated SpineNet for Semantic Segmentation
DeepLabv3-JFT
82.7%
Rethinking Atrous Convolution for Semantic Image Segmentation
Auto-DeepLab-L
82.04%
Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Image Segmentation
ResNet-GCN
81.0%
Large Kernel Matters -- Improve Semantic Segmentation by Global Convolutional Network
HyperSeg-L
80.61%
HyperSeg: Patch-wise Hypernetwork for Real-time Semantic Segmentation
DFN (ResNet-101)
80.60%
Learning a Discriminative Feature Network for Semantic Segmentation
WASPnet-CRF (ours)
80.41%
Waterfall Atrous Spatial Pooling Architecture for Efficient Semantic Segmentation
Deeplab v3+ (Res2Net-101)
79.3%
Res2Net: A New Multi-scale Backbone Architecture
FastDenseNas-arch0
78.0%
Fast Neural Architecture Search of Compact Semantic Segmentation Models via Auxiliary Cells
ReLICv2
77.9%
Pushing the limits of self-supervised ResNets: Can we outperform supervised learning without labels on ImageNet?
DeepLab-CRF (ResNet-101)
77.69%
DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
FastDenseNas-arch2
77.3%
Fast Neural Architecture Search of Compact Semantic Segmentation Models via Auxiliary Cells
DetCon
77.3%
Pushing the limits of self-supervised ResNets: Can we outperform supervised learning without labels on ImageNet?
FastDenseNas-arch1
77.1%
Fast Neural Architecture Search of Compact Semantic Segmentation Models via Auxiliary Cells
DeepLabv3 (ImageNet+300M)
76.5%
Revisiting Unreasonable Effectiveness of Data in Deep Learning Era
BYOL
75.7%
Pushing the limits of self-supervised ResNets: Can we outperform supervised learning without labels on ImageNet?
0 of 29 row(s) selected.
Previous
Next