HyperAI
HyperAI超神経
ホーム
プラットフォーム
ドキュメント
ニュース
論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
利用規約
プライバシーポリシー
日本語
HyperAI
HyperAI超神経
Toggle Sidebar
サイトを検索…
⌘
K
Command Palette
Search for a command to run...
プラットフォーム
ホーム
SOTA
セマンティックセグメンテーション
Semantic Segmentation On Pascal Voc 2012
Semantic Segmentation On Pascal Voc 2012
評価指標
Mean IoU
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
Mean IoU
Paper Title
DeepLabv3+ (Xception-JFT)
89.0%
Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation
DeepLabv3+ (Xception-65-JFT)
89.0%
Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation
DeepLabv3-JFT
86.9%
Rethinking Atrous Convolution for Semantic Image Segmentation
CASIA_IVA_SDN
86.6%
Stacked Deconvolutional Network for Semantic Segmentation
Smooth Network with Channel Attention Block
86.2%
Learning a Discriminative Feature Network for Semantic Segmentation
SANet (pretraining on COCO dataset)
86.1%
Squeeze-and-Attention Networks for Semantic Segmentation
HamNet w/o COCO (ResNet-101)
85.9%
Is Attention Better Than Matrix Decomposition?
EncNet
85.9%
Context Encoding for Semantic Segmentation
Auto-DeepLab-L
85.6%
Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Image Segmentation
PSPNet
85.4%
Pyramid Scene Parsing Network
ResNet-38 MS COCO
84.9%
Wider or Deeper: Revisiting the ResNet Model for Visual Recognition
OCR (HRNetV2-W48)
84.5%
Segmentation Transformer: Object-Contextual Representations for Semantic Segmentation
OCR (ResNet-101)
84.3%
Segmentation Transformer: Object-Contextual Representations for Semantic Segmentation
Multipath-RefineNet
84.2%
RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation
ShelfNet
84.2%
ShelfNet for Fast Semantic Segmentation
EANet (ResNet-101)
84%
Beyond Self-attention: External Attention using Two Linear Layers for Visual Tasks
Large Kernel Matters
83.6%
Large Kernel Matters -- Improve Semantic Segmentation by Global Convolutional Network
TripleNet
83.3%
Triply Supervised Decoder Networks for Joint Detection and Segmentation
SANet
83.2%
Squeeze-and-Attention Networks for Semantic Segmentation
TuSimple
83.1%
Understanding Convolution for Semantic Segmentation
0 of 51 row(s) selected.
Previous
Next